
E N A B L I N G C R O P A N A LY T I C S AT S C A L E ( E C A A S ) 

Creating Next Generation Field 
Boundary and Crop Type Maps 
Rigorous Multi-Scale Groundtruth 
Provides Sustainable Extension 
Services for Smallholders



		

	 Contents

1	 Overview �  4
 

2	 Approach �  6 

	 2.1 Groundtruth data and methods �  8
	 2.2 Crop type mapping �  10

	 2.3 Annual, large-scale mapping of field boundaries �  10

	

3	 Key Findings �  11

	 3.1 Drone-based labels improve model 

	 training and assessment �  12

	 3.2 Drone-based labeling can be automated �  14

	 3.3 Synthetic labels improve model performance �  16
	 3.4 Neural networks improve the quality 

	 and transferability of crop type models �  18

	 3.5 Updating field boundary maps updated �  22

4	 Recommended Improvements & Next Steps �  25

	 4.1 Class 2 labels �  26

	 4.2 Synthetic labels �  26

	 4.3 Crop type models �  27

	 4.4 Field boundary maps �  27

5	 Conclusion �  28

	

6	 Data Availability �  30



		

	 Methods �  32

	 A. Groundtruth data �  32

		  A.1 Class 1 labels �  33

		  A.2 Class 2 labels �  34

		  A.3 Class 3 labels �  35

		  A.4 Public datasets �  36

		  A.5 Label usage �  37

	 B. Crop type and field boundary mapping  �  38

		  B.1 Using synthetic labels to improve crop type maps �  39

		  B.2 Developing a model to predict Class 2 labels �  40
		  B.3 Neural networks to improve crop type maps 

		  and model transferability  �  40

		  B.4 Annual, large-scale mapping of field boundaries �  42

	 References �  44

	 Contributors �  47



|   Creating Next Generation Field Boundary and Crop Type Maps4

1
Overview
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A key challenge to providing improved extension services to smallholder farmers is the 

lack of accurate data on smallholders farms, including such basic information on where 

fields are and what crops they are growing. These data are necessary for developing 

and providing reliable, informed services. For example, an important set of recommen-

dations that Farmerline makes to farmers is what seeds they should buy and how much 

fertilizer they should apply. As we often deliver such information through automated 

cell phone messages sent in response to SMS requests sent by farmers, it is important 

to know which crops are growing in each requester’s region, otherwise the information 

we send can be irrelevant or misleading, resulting in lower demand for our services or 

even bad outcomes for farmers. Maps showing what crops were growing throughout 

our service region would enable us to target responses appropriately. Satellite-based 

analyses can provide such information, as new satellites and the growing capabilities 

of machine learning models make it increasingly possible to make accurate agricultural 

maps. However, a major obstacle to our ability to develop satellite-based agricultural 

maps that we can use to deliver reliable information to farmers, is the lack of ground-

truth data, which are observations collected on the ground showing which crops were 

growing during a specific season in a representative sample of fields. These groundtruth 

data are essential for training the models that identify specific crops within satellite 

images, but are very hard and expensive to collect. 

Our project sought to address the challenge of collecting ground truth while at the 

same time developing a capability to develop reliable and timely agricultural maps. To 

do so, we developed and tested innovative methods for collecting ground truth data, 

and integrated these with advanced machine learning and new satellite image sources 

to create improved maps of field boundaries and crop types. Our objectives were 1) to 

demonstrate the effectiveness of these methods at large-scale and over diverse geogra-

phies, 2) to make publicly available the data and methods to the broader crop analytics 

community, and 3) to use the resulting maps and methods to build improved services to 

our customers. This report provides a summary of our approach and the key method-

ological findings in this project. 

Our open-source framework allows for future innovation in the development of EO 

solutions for increasing food security, which can be extended and scaled to other regions 

in Africa through the PDTT and our user network. Specific objectives of the framework 

include the demonstration of an end-to-end workflow comprising the following steps:
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2
Approach
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To achieve these objectives, our project had three major 
areas of methodological focus:

1.	 Creation of representative sampling strategies through the combination of the newly created 

continental DE Africa crop mask dataset and unsupervised machine learning.

2.	 Developing techniques that enable groundtruth to be collected over large areas for low cost, 

and which improve the resulting data’s effectiveness for training and evaluating mapping 

models;

3.	 Developing models that can map crop types more accurately, and which are more transfer-

able between regions and seasons, in order to minimize the amount of new labels that need 

to be collected; 

4.	 Creating annual, country-scale maps of crop fields. 

Our study included two regions in Ghana and one in Northern Tanzania (Figure 1). In 

Ghana, our project areas covered 62,000 km2 in northern Ghana and 21,600 km2 in cen-

tral Ghana, stretching between Ejura/Sekyedumase district in the east and Tain district 

in the west (the Ejura-Tain focal region). The study area in Northern Tanzania spans 

213,000 km2.

Figure 1:
The three primary focus areas 

of the project (blue regions in 

map on top row), with the dis-

tribution of collected labels in 

each region shown by crop type 

(bottom rows) . Plots in Ghana 

were collected as part of this 

project in 2021, points in Tanza-

nia were gathered from public 

data sources, and represent 

crop observations collected 

in 2018 and 2019 (see Table 

1). The grey outline in Ghana 

shows the domain in which 

labels provided in a spatially 

de-referenced public dataset 

were collected in the year 2016 

(Table 1). Points on maps are a 

10% sample of each dataset, to 

prevent visual crowding.
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2.1. Groundtruth data and methods
We developed three methods for collecting groundtruth data for crop types (hereafter labels1). We grouped the result-

ing labels into 3 classes according to the method used to develop them, and which vary in their accuracy and suitability 

for use (Table 1). 

Class 1 labels were collected by Farmerline’s agents on the ground during visits to farmers within our extension net-

works. Agents recorded the boundaries of individual fields and the crop types growing in them using the GPS-enabled 

Mergdata platform, following data collection and cleaning protocols established during our previous project. These 

labels were collected during 2021 in two regions of Ghana (Figure 1), resulting in 3,065 cleaned labels, with 1,146 for 

maize and 470 for rice, 1,449 representing 24 other types (Table A1). We also collected 2,221 non-cropland points 

through visual analysis of PlanetScope imagery. 

Table 1: 
Description of the crop type label datasets used in this project.

Method/Source Key Characteristics

Collected under 

this project

Class 1 Boundaries around fields and 

crop type collected on ground 

by Farmerline agents using the 

Mergdata platform

The most accurate and information rich class of label, but most expensive to 

collect, and does not conform to design requirements for reference samples

Class 2 Labels interpreted from drone-

collected imagery

Samples cover a large area and are collected following a probability design. 

Many crops can be accurately labeled in the imagery, but accuracy is lower 

than Class 1 labels and many smaller crops cannot be identified.

Class 3 Model-generated labels, based 

on highest confidence crop type 

predictions from Random Forests 

model

Generates large numbers of additional training samples at low cost, but 

label quality can only be indirectly assessed through impact on model 

performance. Not suitable for validation/reference.

Public 

lables

- Stanford University, accessed 

through Radiant MLHub

Ground-collected field boundary data from 2016 (Northern Ghana), 

rasterized with spatial references removed. Sentinel-1, Sentinel-2, and 

PlanetScope predictors are provided (Rustowicz et al, 2020)

- Great African Food Company, 

accessed through Radiant MLHub

Field center points providing crop type observations, converted to polygons 

using image interpretation  (Great African Food Company, 2019)

- Tanzania  Soil Information Service Two datasets: 1) Crop scout data: point locations with details on crops 

growing within ~11 m radius; 2) geo-located maize trial data (Walsh et al, 

2018)

1 Labels are annotations (collected as GPS records on the ground, or as digitized polygons or points on an image) that define 

what crop is growing in that area, which are then combined with imagery to train and validate models.  
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To overcome limitations in the Class 1 labels (cost of collection, inadequate representa-

tion of crop types, limited spatial coverage), we developed a two-stage sample design in 

which drones (operated by Africa Surveys and Imaging Systems) were used to collected 

3 cm resolution imagery over 194 pre-selected 550X550 m sites (Figure 2). We then dig-

itized the crop types visible in the imagery to create Class 2 labels. A subset of the data 

were collected over Class 1 labels (blue points in Figure 2), and we used this overlap to 

assess the accuracy of Class 2 labels. We also tested whether convolutional neural net-

works could be used to effectively classify crop types in the drone imagery, and thereby 

automate the creation of Class 2 labels (section 3.2 and B2).  

In addition to Class 1 and 2 labels, we created synthetic Class 3 labels (Sections 2.2 and 

B.1) using the predictions from a crop type model. We also collected several freely avail-

able public label datasets, one covering Northern Tanzania for the years 2018 and 2019 

and the other Northern Ghana for the year 2016 (Figure 1). 

We combined Class 1, 2, and 3 labels for model development and analysis. We used Class 

1 labels primarily for model training and to assess the accuracy of Class 2 labels. We used 

Class 2 labels to develop validation samples for assessing model performance, as their 

design made them more representative of crop distributions. Class 3 samples were used 

exclusively to boost the size of model training samples, while the public labels were used 

to develop and evaluate deep learning-based crop type models.

Figure 2:
The distributions of Class 1 and Class 2 labels collected during 2021 campaigns.

[] Class 1

[] Class 2
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2.2. Crop type mapping
We developed and tested two different approaches for improving the quality of sat-

ellite-based crop type maps. In the first approach, we combined Class 1 and 2 labels 

to train Random Forests models with predictors derived from Sentinel-1, Sentinel-2, 

and PlanetScope imagery, and extracted the models’ highest confidence predictions 

to create the Class 3 labels. We then tested if the models’ performance improved after 

re-training with Class 3 labels. Our goal was to assess whether synthetic labels improve 

crop type maps, while reducing the need to collect labels. 

In the second analysis, we evaluated two different neural networks that were trained 

to classify crop types within high frequency time series of Sentinel-1 and Sentinel-2 

imagery. The two models, a Long Short-Term Memory Network (LSTM), and a temporal 

convolutional neural network (tempCNN), have been previously shown to outperform 

Random Forests for crop type classification. They may also be more easily transferred 

to new regions or time periods, which can help minimize future label collection effort. 

To evaluate model performance and transferability, we developed four datasets repre-

senting different regions (three in Ghana, one in Tanzania), as well as a global dataset 

containing labels from all four regions. We trained models using each of these datasets, 

and evaluated their performance 1) within their own region, 2) when applied to each of 

the other regions, and 3) within each region (other than itself) after fine-tuning on that 

region’s labels. 

2.3. Annual, large-scale mapping of 
field boundaries
In addition to mapping crop types, we also refined and implemented methods for 

mapping crop field boundaries. Field boundary maps provide crucial information on 

where crops are growing and in what type of fields they are being grown in (e.g. small-

scale or large-scale commercial), and can improve the accuracy of crop type models by 

acting as a filter that focuses their predictions within likely fields. In Ghana and other 

smallholder-dominated agricultural systems, field boundaries shift frequently within 

and between seasons, therefore field boundary maps need to be updated on an annual 

basis to track active fields. A key goal in our project was to demonstrate the ability to 

make annual, fine-grained field boundary maps at large scales. To do this, we adapted a 

previously implemented version of a Unet model designed to work with high-resolution 

(~3.7 m) PlanetScope imagery, and used it to create updated maps of Ghana for the years 

2019, 2020, and 2021, and for Tanzania for the years 2017 and 2018.



|   Creating Next Generation Field Boundary and Crop Type Maps11

3
Key Findings
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3.1. Drone-based labels improve model 
training and assessment

We found that using drones to collect imagery for labeling (Class 2) offered a number of 

advantages relative to purely ground-based (Class 1) label collection: 

	ΰ Using drones enabled us to rapidly collect data over a larger region than we could

cover on the ground (Figure 2); 

	ΰ The relatively large footprint (>30 ha) covered by each of the 194 collected images

allowed us to generate a more labels covering a greater variety of crops than we 

could gather on the ground; 

	ΰ As the drone imagery was collected using a probability design, the resulting labels

were more representative of crop type distributions in our regions;

	ΰ Having a larger, more representative sample enabled us to more effectively train

and assess the performance of crop type models. 

However, Class 2 labels have several disadvantages compared to Class 1 labels: 

ΰ Their crop type definitions are less accurate (see section A.2.) than those of Class

1 labels, particularly for shorter crops, those with narrower canopies, or very fine 

leaves (e.g. carrots), which are hard to recognize in the drone images;

ΰ Labeling drone images is time-consuming, requiring several hours per image.

Given these benefits and limitations, Class 2 labels should be used primarily for labeling 

larger, easier to recognize crops such as maize and rice.

Details
Class 2 labels were collected from sites that were pre-selected based on a two-stage, 

probabilistic sampling design. We digitized a total of 9,070 Class 2 polygons from 

the collected drone images (link to Class 2 label report), of which 4,600 had recognized 

crop types (Table A2). These labels were collected over broader geographies than 

those cov-ered by Class 1 labels within our two focus regions (Figure 2), within a 

relatively short period of time (3-4 weeks per region) by a small number of 

personnel. In addition to increasing our reach, we were also able to substantially 

increase the sample sizes for key crop species, more than doubling our maize and 

rice observations, while obtaining information on other crops that were not priorities 

for Class 1 collection (e.g. bananas, sorghum). 

Class 2 labels provided a relatively unbiased sample of crop type distributions, which 

allowed us to create reference labels that give us a more accurate understanding of 

model performance. Ironically, this gave the appearance that our model became less 

accurate over time; our first Random Forests’ map developed for Ejura-Tain, using only 

Class 1 labels for reference, achieved overall accuracies of 70-76%, compared to 62% in 

our latest version that we trained and evaluated with Class 1 and 2 labels. The reason 

https://cropanalytics.net/wp-content/uploads/2022/11/Deliverable_-Class-2-Label-Generation.pdf
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for the higher accuracy in the earlier version is almost certainly because reference labels 

were more clustered and in closer proximity to training labels, and therefore more cor-

related, thereby inflating accuracy estimates. The greater geographic reach of Class 2 

labels resulted in maps that were less clustered and presumably better reflected actual 

crop distributions in each region. 

Class 2 labels have several downsides compared to Class 1 labels. One of these is that 

the labels themselves are less accurate, as interpreting crop types, even in near-surface, 

high-resolution imagery, is difficult. This was made evident by a comparison between 

Class 1 and Class 2 labels in areas of overlap (Figure 2), and by the uncertainty evident 

when multiple labellers mapped the same sites (Figure 3). The uncertainty, and thus 

error, was highest for smaller crops (those growing lower to the ground and/or with 

narrow canopy cover). 

Figure 3:
Two of 8 sites where Class 2 labels were developed by 4 labelers, showing the consensus label (the most frequently labeled class) on the 

top row, and the between-labeler agreement expressed as the percentage choosing the class (e.g. 100% = all 4 labellers agreed; 25% = all 

labellers disagreed).

Class 2 labels are therefore best suited for developing labels for larger or more widely 

and uniformly planted crops that are easier to identify in imagery, such as maize and 

rice, rather than minor crops, such as tomatoes or leaf vegetables.  



|   Creating Next Generation Field Boundary and Crop Type Maps14

Another disadvantage of Class 2 labels is that they are extremely time-consuming to 

develop. A complete labeling of one orthophoto can take anywhere from 1-4 hours, 

depending on the complexity of the cropland in the scene. Assuming an average of 2 

hours per scene, that equates to 380 person hours (9.5 weeks) to label all 190 scenes. 

The accuracy and speed with which labeling can be completed can be improved (and 

there is some potential for automating label generation; see section 3.2), however, and 

the error rates, while preventing a full accounting of map accuracy, are unlikely to unduly 

bias accurate assessments because labeling errors are likely to be random within each 

crop type.  

3.2. Drone-based labeling can be 
automated
We adapted Unet, the convolutional neural network we use for field boundary mapping, 

to develop models that could be used to automate the creation of Class 2 labels, and 

thereby reduce the large effort required for manual image labeling. Our initial experi-

ments found that:

	ΰ The model showed moderate ability to classify maize, rice, and noncrops (f1 = 0.62-

0.69) in 40 cm resolution drone imagery, but poor performance for other classes;

	ΰ Performance of the model and the coherence of predicted labels improved when

simplifying the number of classes used to train the model from 9 to 4;

ΰ Label error was a major factor limiting model performance.

Details
We used Class 2 labels to train three versions of Unet to predict crop types within 

the drone imagery we collected (Class 2 label modeling report). The two most 

promising versions were a full Unet trained on 9 classes (maize, rice, sorghum, 

legumes, other crops, tree crops, fallow, unidentified, and noncrop) derived from Class 2 

labels, and one trained with 4 simplified classes (maize, rice, other crops, and noncrop). 

Both models achieved moderate performance for maize, rice, and noncrop. The 9-class 

model performed poorly in predicting all other classes. The 4-class model outperformed 

the 9-class model for the 3 common classes, with slightly higher scores for maize (F1 = 

0.69 versus 0.63 in the 9-class model) and rice (F1 = 0.62 versus 0.60), but with substan-

tially larger gains for the noncrop class (F1 = 0.65 versus 0.51). 

The 4-class model also showed a large gain in the other crops class (F1 = 0.56 versus 

0.26), but the classes were not identical between the models (other crops in the 4-class 

also included sorghum, legumes, unidentified, fallow, and tree crops). The 4-class model 

produced the highest quality maps with the greatest class coherence (Figure 4).

https://cropanalytics.net/wp-content/uploads/2022/11/Deliverable_-Class-2-Label-Generation.pdf
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Figure 4:
A selection of 6 of 94 collected drone images (top row) used for model validation samples, their corresponding Class 2 labels (middle row), 

and the predictions for those labels generated by a Unet model (bottom row).

The low to moderate performance by these models is due in large part to errors in the 

Class 2 labels, rather than model inadequacies. The classes for which the model per-

formed most poorly were the ones that were hardest to label (e.g. legumes, including 

groundnuts, soybean, etc) and thus most error-prone. Confusion within the training 

data undermined the 9-class model’s performance, while errors within the validation/

reference sample made it difficult to reliably assess model performance for certain 

classes. For example, areas where tree crops were either unlabelled or mislabelled, 

but were correctly predicted by the model, were counted as model commission errors. 

Combining these harder-to-label, more erroneous classes, into a single super class (the 

other crops class in the simplified 4-class model) helped to improve model performance. 

Given these results and the capability demonstrated in a similar previous study that 

applied a CNN to map crop types in drone images (Chew et al., 2020, who seeded the 

idea for our analysis), we believe there is good potential to improve these results and 

develop the ability to automate Class 2 label creation for major crop classes. 

Improving the overall accuracy of Class 2 labels, even just a representative subset of the 

labels, may provide the most immediate potential gains. Reducing the labels into binary 

sets (e.g. maize/non-maize; rice/non-rice) and using these to train a series of separate 

models may further improve performance for each of the major crops, provided the pro-

cess for merging results does not undermine the gains. Testing other semantic segmen-

tation architectures (e.g. DeepLab; Chen et al., 2018), or adopting an image-classifica-

tion approach, such as the one used by Chew et al (2020), may also yield better results. 
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3.2. Synthetic labels improve model 
performance

Comparing results from two Random Forests models, one trained with just Class 1 and 

2 labels, the other trained with the same set of labels plus model-generated labels, 

demonstrated that synthetic Class 3 labels:

	ΰ Improved model performance in Northern Ghana, the largest focal region, while

leaving it unchanged in Ejura-Tain; 

	ΰ Improved the relative distributions of crop types in both regions, by reducing

obvious false positive errors while making the relative share of each crop type more 

realistic (Figure 5). 

These results provide further evidence (Alemohammad, pers. comm., 2022) that syn-

thetic labels provide a low-cost, effective means for improving crop type maps. However, 

because their identity cannot be verified, they should only be used in training samples, 

not for model validation. 
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The Ejura-Tain model, which produced relatively few Class 3 labels, showed no net gain 

in accuracy–improvements in some classes were offset by declines in others–but nev-

ertheless showed similar patterns of improvement in crop spatial distributions within 

the updated map, and brought the proportion of maize relative to rice more in line with 

expected values in the region (Figure 5). 

Figure 5:
Crop type maps resulting from the 

initial Random Forests models for 

northern Ghana (A) and Ejura-Tain 

(C), compared to those trained 

with additional Class 3 labels (B 

and D). Rose circles highlight an 

area of pronounced reduction in 

predicted rice crop distributions 

in the Class 3-enhanced model 

(B) relative to the initial model (A), 

while yellow circles indicate an

area where the Class 3-enhanced

model for Ejura-Tain (D) showed

higher maize concentration com-

pared to the initial model (C).

Details
We developed Class 3 labels from crop type maps produced by Random Forests models 

(one for each region) trained using Class 1 and 2 labels, using predictors drawn from 

Sen-tinel-1, Sentinel-2, and PlanetScope imagery (Class 3 Label Report). The 

model we developed for Northern Ghana showed gains in both User’s accuracy (or 

precision, which factors in false positive error for a particular class) and Producer’s 

accuracy (or recall, which accounts for false negative error) across nearly all 6 

modeled crop types (maize, rice, soybean, sorghum, other crops, noncrop), 

raising the former by an average of nearly 3 percentage points (pp), and the 

latter by 1.6 pp, while overall accuracy increased by 2 pp. In addition to these 

gains in accuracy, the resulting crop type map showed noticeable improvements in 

the mapped distributions of crops, reducing, for example, an obvious over-

prediction of rice (Figure 5). 

[] Maize   

[] Rice   

[] Soybean   

[] Sorghum

[] Other

[] Noncrop

https://cropanalytics.net/wp-content/uploads/2022/11/Deliverable_-Class-3-Label.pdf
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3.4. Neural networks improve the quality 
and transferability of crop type models

Of the two neural networks we developed for crop type mapping, the temporal CNN showed 

the best performance and greatest ability to generalize, and we therefore used it for all 

model experiments. Our results revealed several advantages of this modeling approach:

	ΰ The tempCNN had slightly higher performance than Random Forests models.

	ΰ Although models trained for one region could not be transferred directly to another,

fine-tuning using training labels from the target region enabled successful transfer, 

resulting in performance that was close to that of a locally trained model. 

	ΰ A fine-tuned global model (one initially trained with subsets of labels from all regions)

showed the most promising results, as it slightly outperformed or achieved parity with 

the local model in most cases. The resulting maps were qualitatively better than those 

of the locally trained models. 

	ΰ This improved transferability suggests that a “train global, refine local” strategy could

minimize overall label collection efforts. Publicly available labels play a crucial role in 

enabling the development of global models. 

The results also revealed several disadvantages to using these models:

	ΰ The image processing and model prediction pipelines are more complex and much

slower than they are for Random Forests;

	ΰ The models were sensitive to randomization processes that occur during model train-

ing, producing substantially different performance metrics and maps when between 

otherwise identical runs. 

Details
Initial comparisons of model performance showed that the LSTM overfit the data on all five 

datasets, while the tempCNN learned less deeply but generalized better, outperforming 

the LSTM in nearly every dataset and all four modeled classes (maize, rice, other, noncrop) 

(Crop Type Model Assessment Report). We therefore used the tempCNN for subsequent 

transfer experiments. 

We found that region-specific models–those trained on a label set from a specific region–for 

Northern Ghana and Tanzania performed moderately well, with average F1 scores across the 

four modeled classes (maize, rice, other, noncrop) of 0.52-0.68 (Table 2), with best performance 

for rice in Northern Ghana, and for maize, other crops, and noncrop in Tanzania. The model 

was most effective for Tanzania, followed by Northern Ghana (using labels we collected), and 

less effective for Ejura-Tain (mean F1 = 0.54), a cloudier region with a more imbalanced and 

clustered sample for rice, which the model predicted least accurately. Unexpectedly, given the 

overlap with our Northern Ghana focal region (Figure 1), the model performed worst when 

trained with the public labels from Northern Ghana. The global model trained and validated 

with data drawn from all four regional data had the lowest performance (mean F1 = 0.38). 

https://cropanalytics.net/wp-content/uploads/2022/11/Crop-Type-Model-Assessment-Report.pdf
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Table 2: 
The performance results of experiments evaluating the tempCNN trained and evaluated with different 

combinations of the five label datasets. Row names indicate the dataset used to train the model; columns 

indicate the dataset each trained model was evaluated against. The top half of the table provides results 

for the initial trained models’ performance against its own validation set (bold values on the diagonal) and 

the validation sets for the other three regional datasets (non-bold, off-diagonal values). The bottom half 

of the table contains results from the same models after “local” fine-tuning, where each model was fine-

tuned on and assessed against another region’s labels. Underlined bold values show where a fine-tuned 

model tied or outperformed the original local model. Values provided are the average F1 scores for maize, 

rice, other, and noncrop. 

N. Ghana Ejura-Tain N. Ghana* Tanzania* Global

in
it

ia
l

N. Ghana 0.61 0.25 0.10 0.14 -

Ejura-Tain 0.23 0.55 0.12 0.22 -

N. Ghana* 0.14 0.17 0.52 0.13 -

Tanzania* 0.19 0.27 0.21 0.68 -

Global 0.41 0.38 0.16 0.50 0.38

Fi
n

e-
tu

n
ed

N. Ghana - 0.54 0.45 0.67 -

Ejura-Tain 0.58 - 0.41 0.65 -

N. Ghana* 0.52 0.51 - 0.64 -

Tanzania* 0.62 0.53 0.46 - -

Global 0.61 0.54 0.48 0.68 -

*Indicates the two publicly sourced label datasets.

Directly transferring models trained in one region to another had fairly poor results 

(mean F1 = 0.23), as might be expected, although the global model showed moderate 

effectiveness against the Tanzania dataset (mean F1 = 0.50). 

Experiments showed that fine-tuning a model trained for one region with labels from 

the target region achieved performance that came close to, but was generally slightly 

lower than, that of the local model. The one exception to this was the Tanzania model 

fine-tuned for Northern Ghana, which scored 0.01 higher than the local model. How-

ever, local fine-tuning of the global model produced the most promising results (Table 

2), slightly outperforming the local model for Northern Ghana, achieving parity with the 

Tanzania model, and being just 0.01 lower than the Ejura-Tain model. 
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Refining the global model appears to be most promising not only because of the validation scores, but also because of 

better quality in the prediction maps, which we assessed at two scales: a broader tile scale 5 X 5 km; Figure 6), using 

qualitative assessment, and the finer scale of our standard labeling grid (550 X 550 m; Figure 7), where they could be 

assessed against reference labels. Although the quality of prediction are poorer at this finer resolution (as with most 

maps), the global model, both refined and unrefined, corresponds slightly better than the others to the labels (the F1 

of this five-site comparison is highest for the two global models), and is better than our Class 3-enhanced Random 

Forests model at distinguishing non-cropland from crop types. 

Figure 6:
Mapped crop class predictions for three selected sites in Northern Ghana, shown at the tile scale (5 X 5 km) with a November, 2021 Planet-

Scope basemap image provided to give landscape-level context. Column headers refer to different training approaches: Local = tempCNN 

trained on Northern Ghana labels; Global = model trained with the global label set; Fine-tuned Regional = Tanzania model refined on 

Northern Ghana; Fine-tuned Global = global model refined on Northern Ghana; Random Forests = predictions for the same locations 

produced by a Random Forests enhanced with Class 3 labels (see 3.2). The blue squares indicate the location of grid-scale comparisons 

shown in Figure 7. 

These results therefore suggest that the temporal CNN improves the quality of crop type predictions, and because 

of its transferability, has the potential to reduce label collection efforts. In terms of the former, although the perfor-

mance scores are modest, they represent a slight improvement on earlier work. The tempCNN scored better than 

our Class 3 enhanced Random Forests models, which achieved average F1 scores of 0.56 and 0.53 in Northern Ghana 

(although predicting more classes) and Ejura-Tain, respectively, compared to 0.61 and 0.55 for our corresponding local 

tempCNNs. Our tempCNN for Northern Ghana also scored higher than a 2D-Unet+ConvLSTM that the authors of the 

Ghana public label dataset applied to those data (average F1 = 0.57; Rustowicz et al, 2019), which falls within the 

Northern Ghana region, and the tempCNN achieved close to that level of performance (mean F1=0.52) when applied 

to the same public labels. 

[] Maize   

[] Rice  

[] Other   

[] Noncrop
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Figure 7:
Class 2 labels collected within a 550 X 550 m portion (blue box in left column) of each of the five selected 5X5 km map tiles in Northern 

Ghana, shown in relation to overlapping model predictions for the tempCNN trained using different label sets, as well as a Random Forests 

model (see Figure 6 for definition of column headers). 

In terms of reducing the amount of labels, the results from local fine-tuning of the globally model suggest that this 

model can be fine-tuned on new labels each year, with potentially fewer labels than are needed to train a new model 

from scratch. Although we did not test for required minimum sample sizes, other work with CNNs has shown that a 

pre-trained model refined locally can achieve good performance while greatly reducing the number of labels to map a 

new location (Wang et al., 2022), which is supported by our own prior results on this project.

Weighing against this modeling approach are practical concerns about implementation. The data processing required 

to make maps with the tempCNN is more complex than it is for Random Forests, and the speed of inference tasks much 

slower–as currently coded, 15-30 minutes is required to generate a single 5X5 km map tile with a GPU computing 

instance. Mapping a large region is therefore much slower and more expensive than for Random Forests, which runs 

quickly on much cheaper CPUs (all of Northern Ghana takes a few hours to map). Further effort is therefore needed to 

automate the image processing pipeline, and to improve speed of inference. On top of this, the models are sensitive to 

randomization effects that occur during training. Running the same model with the same parameters but a different 

random seed can produce substantially different results, with average mean absolute F1 differences of 0.029 across 

crops and maps with markedly different crop distributions. 

A final major finding from our results is that they demonstrate the value of public datasets for model development. 

Although it required substantial pre-processing to use, the Radiant MLHub-hosted Stanford dataset afforded us the 

ability to start building models using a dataset from our region, at a time when we were still collecting our own labels, 

affording us more time for model development. The public labels also provided important building blocks for develop-

ing the more effective global model. 

[] Maize   

[] Rice  

[] Other   

[] Noncrop
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3.5. Updating field boundary maps 
updated 

Using a variant of the Unet we used previously to map Ghana for the year 2018, we 

produced maps for all of Ghana for the years 2019, 2020, and 2021, and for Tanzania for 

the years 2017 and 2018 within the space of a few weeks, including the time needed to 

develop the image catalog. These results demonstrate the capacity to develop annually 

updated, high resolution field boundary maps over large areas. 

However, despite initial high performance metrics, the model we initially used had a 

tendency to underpredict fields in Ghana and over-predict in certain areas in Tanza-

nia. Switching back to an earlier version of the model reduced these problems, but 

over-prediction artifacts remain in some areas due to image brightness shifts, particu-

larly in maps for earlier years. These remaining discrepancies are likely due to the image 

normalization procedure, and demonstrate the challenges that can arise when scaling 

up from test datasets to large area maps. 

Details
We used a globally-trained, locally-refined densely-fused Unet to undertake the map-

ping, based on the model’s higher performance than the standard Unet we had used to 

generate prior maps. 

The refined models had a mean accuracy of 87.6% (standard deviation = 0.05%; range 

= 72.2% - 94.2%), an average true positive rate of 66.1% (sd = 9.1%, range = 46% - 

81.3%), and an average false positive rate of 10% (sd = 4.9%, range = 2.7% to 23.9%). 

This performance was generally comparable to or exceeded that of the global model. 

However, the maps themselves showed several inconsistencies, notably a tendency to 

underpredict fields in Ghana, particularly in the year 2020 (see Figure 8), and to over-

predict in Tanzania (where accuracy was also lowest) on uncultivated barelands, along 

with image-related artifacts (patches of extreme false or false negatives positives). The 

over-prediction in Tanzania was primarily due to the relatively small number of labels 

used to refine the model relative to the very large mapping region (northern Tanzania is 

nearly as large as all of Ghana, which we divided into 16 sub-regions for refining), as well 

as the extensive barelands that occur in the region’s grassland areas, which have similar 

reflectance to croplands. Under-predictions in Ghana were likely due to the choice of 

layers left free to vary when refining the model, while image artifacts appear related to 

image normalization. 
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Figure 8:
A comparison of the 2018 Unet-based map of Ghana with the refined DFUnet for 2020 (top row), highlighting the relative under-pre-

diction as well as patches of over-prediction due to image artifacts (indicated with blue arrows). The predictions for Northern Tanzania 

(bottom row) detect croplands effectively, but over-predict in sparsely vegetation grasslands (see inset). Black arrows highlight image 

under-prediction artifacts. 

To address these issues, we tried freezing all but the last layer of the model when refin-

ing, but that did not measurably improve results. We have since reverted to using our 

original Unet, which substantially improved the under-prediction results (see Figure 9), 

but over-prediction artifacts remain in several areas, particularly in earlier years (2019), 

where image brightness varies more often between tiles. 

We are addressing these residual errors through changes to the image normalization 

technique, and will update the maps after these fixes are applied. 

Our previous work has demonstrated the feasibility of making annually updated crop-

land maps at scale, therefore these findings do not show that the task is infeasible. 

Instead, they offer a key lesson, which is that algorithmic changes that appear effective 

on smaller test datasets often do not scale up to production. 
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Figure 9:
A comparison between locally refined versions of DFUnet (A) and original Unet (B) on PlanetScope imagery for 2020. The DFUnet sub-

stantially under-predicted fields in dense cropland areas that were successfully detected by the original Unet. The refined Unet shows 

overprediction in certain areas due to image normalization problems.
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4
Recommended improvements 
and next steps 

Our findings suggest a number of improvements that could be 
made to the existing methods, as well as areas that merit further 
investigation and investment of effort.
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4.1. Class 2 labels
Labeling imagery collected by drones helps reduce the cost of collecting groundtruth 

data, while improving its statistical properties. The following recommendations can 

further improve the quality of Class 2 labels:

	ΰ Capture imagery at the peak of the growing season, when crops are likely to be

most recognizable in the images;

	ΰ Coordinate the collection of Class 1 labels and drone operations so that imagery

is captured within 1-2 weeks after Class 1 labels are collected. Ensure that the 

overlapping Class 1 labels have sufficient examples of each key crop (at least 30 

each) so that the accuracy of Class 2 labels can be reliably assessed; 

	ΰ Collect imagery at two different levels. In addition to the current approach, in which

the drone acquires complete image coverage of the 550X550 m sample cells at 3 cm 

resolution, several transects across the cell can be flown at lower altitude, providing 

partial scene coverage at higher resolution. The lower-level imagery will help 

labellers identify crops in the higher level imagery;

	ΰ Collect multi-spectral imagery that includes near-infrared bands, to improve both

visual image interpretation and the ability of CNNs to predict Class 2 labels. 

	ΰ Focus on improving the quality of existing Class 2 labels in a subset of scenes,

in order to create a high accuracy reference label set and a smaller, high quality 

training sample that can be used to refine label-predicting CNNs;

	ΰ If and when independent and reliable crop survey data become available, compare

the frequency distribution of crop types from Class 2 collected for the same season, 

in order to verify their representativeness. 

4.2. Synthetic labels 

Using models to generate groundtruth shows promise, both for labeling drone imagery 

(Class 2 labels), and to create additional training labels for satellite-based crop type 

models (Class 3 labels). To improve the capacity to create model-generated Class 2 labels: 

	ΰ Test different training strategies for the existing Unet-based approach. For exam-

ple, evaluate whether separate binary models for each crop (e.g. maize/non-maize) 

improve performance; 

	ΰ Evaluate different model architectures and modeling approaches tested, such as

image classification approaches (e.g. Chew et al, 2020)

For satellite-based mapping, further effort should be made to test whether Class 3 

labels can help to improve the performance of the tempCNN. 
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4.3. Crop type models 

Neural network-based crop type models demonstrate the potential to be more effec-

tive than Random Forests, and may help reduce overall label collection efforts. To fully 

understand this potential, the following additional tests should be undertaken:

	ΰ Re-evaluate the model on data collected from the coming season;

	ΰ Perform label reduction tests to identify the minimum sample needed for model

fine-tuning, and compare that to the minimum sample needed to train a Random 

Forests model of comparable effectiveness;

	ΰ Improve the quality and composition of labels used to train the model, by rebal-

ancing the global training sample, and filtering labels so that they represent purer 

examples of each crop type. 

	ΰ Make the image processing pipeline and inference procedures for the tempCNN

more efficient;

	ΰ Explore further architectural improvements, including enhancements that improve

the model’s ability to learn in the presence of clouds (e.g. , and the potential 

improvements that can be obtained by variants that learn from both spatial and 

temporal information (e.g Rustowicz et al, 2020). 

4.4. Field boundary maps 

The field boundary maps are in the process of being updated to deal with the image 

artifacts, and the maps will be released once these are satisfactorily addressed. Subse-

quent improvements will include:

	ΰ Developing labels on imagery for each of the years being mapped, in order to

improve fine-tuning performance; 

	ΰ Similar to the Class 3 labeling approach, we are using the model’s predictions to

help generate new labels. 
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5
Conclusion
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This project developed several methods that have advanced our ability to map and 

analyze croplands, enabling us to develop improved services we provide to our cus-

tomers. Our findings also make several contributions to the broader field of crop ana-

lytics. First, our results for Class 2 labels demonstrate the value of combining drones 

and innovative in-field data collection to create groundtruth that is less expensive and 

more effective for training and evaluating crop type models. Our key innovation, which 

builds on the drone-based labeling methods developed by Hegarty-Craver et al (2020), 

was the design and implementation of a probabilistic sampling technique, along with 

procedures for quantifying the reliability of the image-interpreted labels. By testing the 

ability of a CNN to map crop types in the drone imagery, we further show the potential 

for automating Class 2 label creation, complementing the work of Chew et al (2020) and 

the growing literature that explores the ability of deep neural networks to classify drone 

imagery. 

Second, we show that a model’s predictions (Class 3 labels) can be used to improve its 

performance, allowing more accurate crop type maps to be developed for little addi-

tional cost. This finding contributes to work on synthetic label generation led by Radiant 

MLHub (Alemmohammad, personal communication, 2022), and to prior research on 

model-generated labels (Wang et al., 2019). 

Third, our findings support existing work that shows that temporal CNNs outperform 

Random Forests for mapping crop types in smallholder-dominated agricultural regions 

(Wang et al, 2020), and further show that a “train global, refine local” modeling strat-

egy may help reduce label requirements. Although our experiments did not identify a 

minimum sample size, the potential for this approach to reduce the need for new labels 

is supported by prior studies that use CNNs for field boundary mapping (including our 

own), which have shown that fine-tuning pre-trained models with a small number of 

labels achieves good performance when mapping new locations (Wang et al., 2022).

Finally, we demonstrated the capability to rapidly develop annual, country-scale, high 

resolution maps of crop fields. Although the resulting maps have inconsistencies that 

we are correcting, they are more accurate than those produced by the prior study that 

informed our approach (Estes et al, 2022), and cover a much larger area and longer 

period of time. Furthermore, the Unet-based approach required <10% of the com-

putational resources and <20% of the labels used by the previous method (based on 

Random Forests). 

When combined, these approaches substantially increase the ability to reliably and sus-

tainably collect high resolution, spatially extensive data on crop type and field dynamics 

in hard-to-map agricultural systems.

https://cropanalytics.net/wp-content/uploads/2022/04/FarmerlineClark-Report-Feb-2022-002.pdf
https://cropanalytics.net/wp-content/uploads/2022/04/FarmerlineClark-Report-Feb-2022-002.pdf
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6
Data Availability
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The following datasets are available as this project, accessible through links provided in 

opencropmaps repository to a public AWS bucket account as well as a Box folder:

	ΰ Class 1, 2, and 3 labels

	ΰ Orthophotos (cloud-optimized geotiffs)

	ΰ Class 3 enhanced Random Forests maps for Ejura-Tain and Northern Ghana for

2021

	ΰ Cropland maps for Ghana for 2018-2021 and for Tanzania for 2017 and 2018 (when

fixes completed)

The Class 1 and 2 labels are also being prepared for submission to Radiant MLHub, and 

portions will be released through 6Grain’s Data Sharing Platform. 

Code (currently private while being scrubbed for committed credentials, will be opened 

when complete):

	ΰ LSTM and tempCNN code: https://github.com/agroimpacts/croptypemapper

	ΰ Image processing code: https://github.com/agroimpacts/cscdc

https://github.com/agroimpacts/opencropmaps
https://dsp.6grain.com/
https://github.com/agroimpacts/cscdc

https://github.com/agroimpacts/cscdc



|   Creating Next Generation Field Boundary and Crop Type Maps32

Methods

A. Groundtruth Data

We developed and integrated three methods for generating crop 
type labels, which we categorized into three classes (Class 1, 
2, and 3) that vary in their accuracy and suitability for use (see 
Table 1). In addition to these, we also collected and processed 
several sets of publicly available labels, and evaluated their 
usefulness for model development and evaluation (Table 1). 
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A.1. Class 1 labels

Class 1 labels represent the gold standard in terms of verifying crop identity and provid-

ing additional details that can aid model development (e.g. crop planting dates). 

We conducted two campaigns to collect labels on the ground in Ghana during this proj-

ect, during which our agents visited farmers within our networks. One campaign was 

conducted in Ejura-Tain between October-December, 2021, the other in Northern Ghana 

between September and December, 2021. During each campaign, agents captured field 

boundaries and recorded crop types using the GPS-enabled Mergdata platform, follow-

ing data collection and processing protocols established during our previous project. 

After processing, we had a total of 3,065 usable Class 1 labels for both regions, repre-

senting 26 different crop species, 7 of which had more than 100 records each (Table A1).

Table A1: 
The total cou¬nt of Class 1 labels collected in Ghana across both regions in 2021, by crop species. The 

other crops category comprises 19 species that had <100 samples each.

An additional 2,221 non-cropland points were collected by visually interpreting and 

annotating high resolution PlanetScope imagery captured in November, 2021.

Crop Count

Maize

Rice

Groundnuts

Soybean

Sorghum

Millet

Other crops

1146

470

230

198

159

137

725

https://cropanalytics.net/wp-content/uploads/2021/08/D2.5-Service-Scale-up-Plan-V2-Aug-6-2021-1.pdf
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A.2. Class 2 labels

While Class 1 labels are the most reliable for verifying crop identity, they can be unrep-

resentative of actual crop distributions in our regions of interest. The reason for this is 

that they are hard to collect according to a probability design, due to factors such as 

limited access to farms and transportation logistics, which can result in geographically 

clustered samples with skewed class distributions. Such samples undermine the train-

ing and assessment of crop type models. 

Although field-based crop type sampling can be designed to correct these shortcom-

ings, such designs are substantially more expensive to implement and thus harder to 

sustain. Therefore, to address the limitations in our Class 1 labels in a more economical 

way, we followed Hegarty-Craver et al (2020) in implementing a drone-based label 

collection strategy, building on that approach by developing a probabilistic, two-stage 

sample design for collecting the imagery, which allowed us to collect a sample that was 

likely to be more statistically representative of region crop type distributions. 

We implemented this sample design within a campaign conducted in Northern Ghana 

in September, 2021, and another in Ejura-Tain in November-December, 2021. The cam-

paigns were conducted by Africa Surveys and Imaging Systems (ASIS), a drone services 

provider. ASIS collected imagery within 194 550 X 550 m grid cells that provide the basic 

sampling unit for our agricultural mapping framework ( F igure 3), and converted the 

resulting images into 3 cm orthomosaics that covered each sample cell with 5 m hori-

zontal accuracy. A team of 4 then labeled each of 188 usable orthomosaics following an 

established set of labeling rules, which included use of an image reference library that 

provided examples for key crop species. 

 The Class 1 and Class 2 sample designs were partially overlapped so that both sets of 

labels were collected within a subset of sites (10 in Northern Ghana, 33 in Ejura-Tain; 

blue points in Figure 2). 

We used this overlap to assess the accuracy of Class 2 labels, which was generally low 

(<50%) for small crops (crops growing close the ground or with narrow canopy cover) but 

higher for major crops such as rice and maize (55-90% User’s accuracy), which has since 

been improved through a second round of editing. We also assessed how well labellers 

agreed by having each label the same 8 images (cyan points in Figure 2), which showed 

79-97% agreement on maize, rice, and noncrop classes, with lower agreement on other

classes. The results of these assessments and further detail on label development pro-

tocols are provided in our detailed report on Class 2 labels. The current version of our

Class 2 labels contains 9,070 polygons (Table A2), of which nearly 2,500 contained

crops that could not be identified and 1,930 had no visible crops but had been recently 

harvested or newly prepared (we loosely describe these as “fallow”).

https://cropanalytics.net/wp-content/uploads/2022/11/Deliverable_-Class-2-Label-Generation.pdf
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Table A2: 
The total count of Class 2 labels collected in 2021. Unidentified indicates labels where the crop species 

could not be determined. Other comprises 7 species with <100 samples each. Legumes include soybean, 

bambara beans, cow peas, and groundnuts. Noncrop are areas between the labeled classes. 

A.3. Class 3 labels
We developed a third class of labels by extracting the highest confidence crop type pre-

dictions from Random Forests models. We refer to these synthetic, model-generated 

samples as Class 3 labels, and their development is described in more detail in Section 

B.1. 

Crop Count

Maize

Unidentified

Fallow/newly prepared

Rice

Sorghum

Legumes

Noncrop

Other

Yam

Cabbage

Banana

2766

2498

1930

498

415

207

188

188

157

118

105
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A.4. Public datasets

We collected four open datasets to use in this project (Table 1), three from Tanzania and 

one from Ghana. Two of the Tanzania datasets (geolocated crop scout and maize trial 

points) were provided by the Tanzania Soil Information Service (Walsh et al, 2018) and 

accessed through the Open Science Foundation portal, and the third was provided by 

the Great African Food Company and obtained from Radiant MLHub (Great African Food 

Company, 2019). These three datasets provide crop types for the years 2018 and 2019. 

A dataset covering a portion of our northern Ghana focal region, submitted by Stanford 

University to Radiant MLHub, provided crop type observations for the year 2016 along 

with image time series data (Rustowicz et al, 2020). 

Each dataset contained partially overlapping sets of crop types and came in different 

formats, which required substantial pre-processing to create a common format. The 

Stanford dataset for Ghana is provided as image chips without spatial coordinates, 

which we converted to individual pixel arrays to make them compatible with the Tan-

zania data, which primarily consisted of point observations. Neither dataset of labels 

contained noncrop observations, therefore we collected noncrop samples for each 

using image interpretation. For the Stanford dataset, we interpreted noncrop locations 

directly in the Sentinel-2 images provided with the data, while for Tanzania we placed 

samples within a 5 km buffer around the provided points and identified the points that 

fell outside of crop fields in both 2018 and 2019. 

We simplified the crop types in these datasets to four common classes: maize, rice, other, 

and noncrop. The distribution of the samples, which represent counts of individual 10 

m resolution image pixels, are shown in Table A3. Further details on the preparation 

of these datasets can be found in our report on crop type model evaluation.

Crop Ghan Tanzania

Maize

Rice

Other

Noncrop

186,807

36,670

428,772

56,512

15,391

3,534

37,626

7,134

https://cropanalytics.net/wp-content/uploads/2022/11/Crop-Type-Model-Assessment-Report.pdf
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A.5. Label usage
Each of the three classes of labels have different strengths and weaknesses, which governed how we used 

them for developing and analyzing crop type models (see Table 1). Each class was used for one or more of the 

following purposes: training; validation; label quality assessment. Training data are used to develop models, 

and are typically developed to provide balance across classes and to represent the range of variability in 

the population. Validation data are used to independently assess model performance and generalizability, 

and should be collected using a probability design to ensure statistical rigor (Stehman and Foody, 2019). 

Label quality assessment data2 is to estimate the amount of error in training and validation labels, which is 

particularly important for image-interpreted labels.  

We used Class 1 labels primarily for training satellite-based crop type mapping models and for label quality 

assessment. With the exception of a small number of labels, we did not use Class 1 labels for validation 

because they were not collected using a probability design. We also used Class 1 labels to assess the accuracy 

of Class 2 labels, where they overlapped. 

We constructed validation samples for the satellite-based models from Class 2 labels, since they were col-

lected using a probability design. We randomly selected labels from each class, ensuring that there were at 

least 30 samples per class, and reserved these for validation. The remaining selected labels were then used 

for model training, excluding those that fell within the same orthophotos as validation samples. 

Class 3 labels were only used for model training samples, as their class identity cannot be verified. 

The two public label datasets were used for both model training and validation. As with the Class 2 labels, 

we first randomly selected a validation sample from each dataset, and then used the remainder for training. 

To train the Random Forests models used to generate Class 3 labels, we combined the Class 1 and 2 training 

samples, and used the Class 2 validation sample to assess model accuracy (B.1). We used the same com-

bined Class 1 & 2 sample design to create two of the four label sets used to develop and analyze the neural 

network-based crop type models (B.3). The other two were provided by the public label datasets. We con-

structed a “global” training sample by randomly selecting up to 5000 labels per crop from each of the four 

dataset’s validation samples, and 10,000 pixels per crop from each of their training samples. 

To train and evaluate the CNNs used to predict crop types in drone data (B.2), we only used Class 2 labels, 

first selecting a validation sample, and assigning the remaining labels to the training sample. As before, we 

removed labels that fell within the same orthophoto as validation samples. 	

2 This term is synonymous with training reference data, which is defined by Elmes et al, 2020. We chose this term to avoid 

confusion with training data. 
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Methods

B. Crop type and field boundary 
mapping

During the course of the project, we undertook a series of 
analyses aimed at improving our ability to map the agricultural 
systems in our region. These included two separate efforts 
to improve satellite-based crop type maps, another aimed at 
mapping crop types in drone images, as well as an effort to 
develop multi-year, country-scale crop field maps.
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B.1. Using synthetic labels to improve
crop type maps

Given the lack of labels for crop types, and the significant costs in collecting them, we 

undertook an analysis to see whether predictions from a crop type model could help 

to improve its performance. This effort builds on the concept of synthetic label 

generation advanced by Radiant Earth Foundation, which has shown promise for 

improving crop type models (Alemohammad, personal communication, 2022). 

In this project, we developed two Random Forests (Breiman, 2001) models, which we 

trained and evaluated with our Class 1 and 2 labels, using image predictors drawn from 

Sentinel-1, Sentinel-2, and PlanetScope basemap imagery (see our earlier reports here 

and here for more details on image processing). We used these models to create two 

crop type probability maps, one for Ejura-Tain and one for Northern Ghana. We then 

identified the sites within each map that represented the highest confidence predic-

tions for each crop type and extracted their boundaries to create model-generated, 

Class 3 labels. We then added these Class 3 labels to the models’ original training 

sample, and retrained each model. We evaluated the updated models for performance 

gains, measured in terms of improvements against the reference sample, and in distri-

butional improvements in the resulting maps. The full details of the methods 

behind this approach are provided in our detailed  Class 3 Label Report. A graphical 

overview of the approach is shown in Figure A1. 

Figure A1:
An overview of the work-

flow used to develop Class 

3 labels and evaluate their 

ability to improve model 

performance.

https://medium.com/radiant-earth-insights/can-you-guess-if-this-place-is-real-17aa484a57fa
https://cropanalytics.net/wp-content/uploads/2022/04/FarmerlineClark-Report-Feb-2022-002.pdf
https://cropanalytics.net/wp-content/uploads/2021/08/Creating-Open-Agricultural-Maps-and-Ground-Truth-Data-to-Better-Deliver-Farm-Extension-Services.pdf
https://cropanalytics.net/wp-content/uploads/2022/11/Deliverable_-Class-3-Label.pdf
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B.2. Developing a model to predict
Class 2 labels

We evaluated a second approach for generating synthetic labels, drawing on our Class 2 

labels and their corresponding drone imagery. In this case we adapted the convolutional 

neural network we use for cropland mapping, a Unet (Ronneberger et al., 2015), and 

trained it using our Class 2 labels to predict crop types within the drone imagery (see 

our separate drone report for more details. The goal of this analysis was to determine 

whether the effort needed to label drone imagery, which requires up to 4 hours per 550 

X 550 m orthophoto, can be reduced by using a model to develop the labels. 

B.3. Neural networks to improve crop
type maps and model transferability
In addition to testing whether synthetic labels could improve conventional Random 

Forests’ crop type maps, we developed and evaluated two models based on neural net-

works, a Long Short-Term Memory Network (Hochreiter & Schmidhuber, 1997), and a 

1-dimensional convolutional neural network (Hu et al., 2015). Our goal in developing

these models was to leverage 1) the superior capabilities of neural networks for classi-

fication tasks, including for crop type mapping in this (Rustowicz et al., 2019) and other

smallholder-dominated agricultural regions (Wang et al., 2020), 2) their ability to learn

in the presence of cloud and atmospheric contamination (Rußwurm & Körner, 2017;

Wang et al., 2020), and 3) their ability to be transferred to new regions or time periods

(e.g. Wang et al., 2022), which offers the possibility of reducing the number of labels that 

have to be collected.

In our case, we developed each model (the LSTM and the 1d CNN, which we refer to as 

the temporal CNN or tempCNN) to work with high density, annual time series data from 

the Sentinel-1 and Sentinel-2 satellites (36-52 time points per year), and trained them 

to develop crop type predictions for individual pixels based on these time series. Both 

models had a separate branch for each sensor, which were trained separately to create 

two separate predictions, which were then fused to create a single output prediction. 

As the model architectures and their inputs are substantially different than the Random 

Forests model, we developed a separate image processing processing pipeline to create 

the necessary time series data, which included point-based extraction of image time 

series from Google Earth Engine, as well as the development of 5 X 5 km predictor tiles, 

using imagery obtained from Google Cloud Platform and the European Space Agency’s 

servers. 

https://cropanalytics.net/wp-content/uploads/2022/11/Predicting_Labels_In_Drone_Imagery.pdf
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We developed a series of experiments to evaluate model performance and the ability of 

each model to transfer between our focal regions (see Figure A2 for overview). Using 

our Class 1 and 2 labels together with the public datasets, we developed five sets of 

labels representing each of our three focal regions (Northern Ghana, Ejura-Tain, and 

Tanzania), the non-spatial public dataset for Northern Ghana, as well as a global dataset 

comprised of subsets randomly drawn from each of the four regional datasets. We then 

trained each model on these five datasets, and evaluated their performance 1) within 

their own region, 2) when applied to each of the other regions, and 3) within each region 

(other than itself) after fine-tuning on that region’s labels. 

Figure A2:
A diagram of the workflow and experiments used to assess the neural network-based crop type maps.
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B.4. Annual, large-scale mapping of
field boundaries

To demonstrate the ability to make annual high resolution, country-scale maps of crop 

fields, we adapted an existing Unet model that we had already developed to improve 

on prior efforts to map Ghana’s crop field boundaries (Estes et al., 2022). The adapted 

model we used was a “densely-fused” Unet (DFUnet), a variant of the ordinary Unet 

that we used to map all of Ghana for the year 2018, and the Ejura-Tain region for 2020 

and 2021. The DFUnet provides connections between each node of the decoder (after 

upsampling) with each node in the encoder that has the same spatial extent or larger. 

We adapted this approach because it improves the ability of the model to make use of 

image features derived from multiple scales, and it showed initial promise in reducing 

omission errors relative to the standard Unet. We used it to create updated maps of 

Ghana for the years 2019, 2020, and 2021, and for Tanzania for the years 2017 and 2018.

To map field boundaries, we trained the model on high resolution PlanetScope imag-

ery to recognize three classes: the edges of fields, the interior of fields, and non-field 

areas. The predicted field interiors can then be used to segment the resulting map into 

instances of individual fields. 

Figure A3:
An overview of the cropland mapping framework.

https://cropanalytics.net/wp-content/uploads/2022/04/FarmerlineClark-Report-Feb-2022-002.pdf
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We first trained a “global” model using an extensive set of fi eld boundary polygons 

collected within 4,598 550 X 550 m grid cells spread across Ghana, Northern Tanzania, 

and the Republic of Congo, resulting in a model that had 82.7% accuracy on the field 

interior class, with true and false-positive rates of 71% and 14.5%. We then fine-tuned 

the model to make several region-specific variants (16 for Ghana, 1 for Northern Tanza-

nia) to improve model accuracy. To fine-tune the model, we froze the trained weights on 

all but the last two layers, and then retrained the model on the labels specific to each 

region. 

We used the resulting fine-tuned m odels t o m ake m aps i n e ach r egion for e ach o f 

the years. To enable this, we developed an image catalog from PlanetScope’s monthly 

basemap archive, made freely available through Norway’s International Climate 

and Forest Initiative. More details of our modeling approach can be found in our prior 

cropland mapping report. A graphical overview of the approach is illustrated in Figure 

A3. 

https://cropanalytics.net/wp-content/uploads/2022/11/Deliverable_-Cropland_Maps-1-1.pdf
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