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1
Overview
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The report provides a summary of the final map deliverables for the ECAAS project “Creating Open Agricultural Maps 

and Groundtruth Data to Better Deliver Farm Extension Services”. This project was developed to address the challenges 

of collecting ground truth data on crop types in a sustained manner and to create reliable maps of crop types that 

cover large areas and multiple seasons. The goal of developing such maps is to use them to improve subsequent exten-

sion services and develop value-added products for farmers and agribusinesses, in order to boost reach and revenues, 

and thereby support the expansion and continuation of ground-data collection and map development.

In this project, groundtruth data were collected by Farmerline field agents, who used the GPS-enabled Mergdata 

platform to delineate the boundaries of crop fields belonging to farmers with whom a relationship has already been 

established. These observations, which were collected in accordance with recommended best practices1, were then 

used to create crop type maps from Sentinel-1, Sentinel-2, and PlanetScope imagery by leveraging recent advances in 

machine learning and Earth Observation, including deep learning models. The maps were developed for the Ejura-Tain 

region, the primary focus of the first phase of this project (Figure 1.1).

Figure 1:
Dynamic frames can be generated using 

rainfall or NDVI data. Rainfall data have 

greater predictive capabilities at larger 

geographic scales, while NDVI is more 

useful at sub-national scales.

1  https://github.com/radiantearth/ground-referencing-guide

https://cropanalytics.net/?page_id=1367
https://cropanalytics.net/?page_id=1367
https://github.com/radiantearth/ground-referencing-guide
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2
Approach
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To develop these maps, we followed the approach described in the report from the first 

season and illustrated in Figure 2.1. This entails the following steps:

 ΰ Use field-collected crop type observations (so-called Class 1 labels) to develop a set 

of training and reference labels;

 ΰ Process time series of Sentinel-1, Sentinel-2, and PlanetScope data covering the 

relevant seasons;

 ΰ Extract image data underlying the labels;

 ΰ Train a Random Forests model to predict maize, rice, other crops, and noncrop 

classes, evaluating the model performance using a reserved subset of labels;

 ΰ Use the model to map the four classes throughout the study area

 ΰ Filter the predictions through high-resolution field boundary maps, developed 

using a deep learning model applied to PlanetScope data, in order to confine the 

predictions to those areas most likely to be crop fields.

Figure 2.1:
An overview of the approach used to develop the Random Forests-based mapping model.

In the next sections, we provide a summary of the model and approach used for developing the maps.
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https://cropanalytics.net/wp-content/uploads/2021/08/Creating-Open-Agricultural-Maps-and-Ground-Truth-Data-to-Better-Deliver-Farm-Extension-Services.pdf
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2.1 Cropland maps
To create the cropland maps for 2020 and 2021 that we used to filter the crop type 

predictions, we used a U-Net (a convolutional neural network; Ronneberger et al. 2015) 

model that was developed for the purpose of creating annual, country-scale maps 

of crop field boundaries. This model represents an evolution of a proof-of-concept 

method that was used to map Ghana’s field boundaries for the year 2018 (Estes et al., 

2021), and its application in this project demonstrates its capability to create yearly field 

boundary maps. We used a version of the model trained on 2018 PlanetScope imagery 

with a set of 4593 labels collected across Ghana, Tanzania, and the Republic of Congo. 

This “global” model was trained to classify both field boundaries and field interiors. We 

used the maps developed from the predictions of the interior class to identify and delin-

eate individual fields or field clusters. The accuracy of this initial model was 86.1% for 

the field interior class, with corresponding true and false positive rates of 65.2 and 8.3%, 

respectively, indicating the model makes relatively little commission error but misses 

about 35% of fields.

We applied this model to the Ejura-Tain study region with the following steps:

1. We resampled PlanetScope basemap imagery from November 2020 to ~3 m reso-

lution and retiled it to it to match the grid used for prior Ghana-wide mapping work 

(Estes et al, 2021).

2. We digitized a set of 120 field boundary labels on this imagery, from sites selected 

within the Ejura-Tain region.

3. We then refined the model using 108 of the collected labels. We froze the weights on 

the first 58 layers of the model, letting the model update parameters on the remain-

ing layers over 15 epochs.

The resulting refined model, assessed against the 10% of labels reserved for vali-

dation, was 83.1% for the field interior class, with true and false positive rates of 61.9 

and 11%. This performance is slightly lower than that of the global model, but this was 

expected given that 1) the imagery was processed differently (Planet uses a “best on 

top” approach to make basemaps) than the PlanetScope data used to train the original 

model (a temporal compositing procedure described in Estes et al., 2021), and 2) the 

Ejura-Tain region is particularly challenging to map, given its position at the transition 

between tropical forests and savannas, and corresponding high cloud cover (Estes et al., 

2021). The primary implication of these error rates for map usage is that they will lead 

to underestimates of total cropped area, and, when used to filter crop type maps, to 

underestimates of total planted area for different crops. Such underestimates can be 

corrected using an appropriately designed map reference sample (Stehman et al, 2019). 
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We are also taking steps to further reduce error by introducing several refinements to 

the model architecture (e.g. more connections between model layers) and by increasing 

the number of training labels.

We used the refined model to map field interiors on imagery from both November, 

2020 and November 2021, which is the middle of the short growing season that we 

focused on for mapping crop types. After predicting the field interiors for each region 

and each year, we used a simple approach to label clumps of pixels representing dis-

tinct fields or clusters of fields into individual instances. We converted these into vectors 

to provide field polygons. This approach in some cases results in multiple fields being 

grouped together, particularly where boundaries between adjacent fields are indistinct, 

but it nevertheless provides a much finer segmentation than the version 1 approach we 

developed for Ghana (Estes et al., 2021).

A comparison of the mapped field boundaries for 2020 and 2021 over one of the 5x5 km 

tiles covering the study region is shown in Figure 2.2. Although some of the differences 

are due to model error, these maps to a substantial degree capture the significant year-

to-year variations in field distributions that occur in these croplands.

Figure 2.2:
Cropland boundaries (yellow) mapped with a deep learning model for the month of November in 2020 (left) and 2021 (right). Field 

boundaries are shown over the corresponding PlanetScope basemaps for those two time periods, rendered in false color.

2020 2021
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Table 2.1: 
The count of Class 1 labels collected by crop type by year.Crop Year Count

Maize

Maize

Other

Other

Rice

Rice

2020

2021

2020

2021

2020

2021

571

434

18

618

58

305

Figure 2.3:
Cropland boundaries (yellow) mapped with a deep learning model for the month of November in 2020 (left) and 2021 (right). Field 

boundaries are shown over the corresponding PlanetScope basemaps for those two time periods, rendered in false color.

•  Maize

•  Non-crop

•  Other

•  Rice

Year Collected

Crop Types

•  2020

•  2021

2.2 Crop type maps
We used the Class 1 labels collected by Farmerline’s agents over two seasons to develop crop type models based 

on the Random Forests algorithm (Breiman, 2001). These included labels from both the first short season of 2020 

(August-December) and the short season of 2021. We focused on these two seasons because there were insufficient 

observations from the long season of 2021 (~April-September) to train a model, and optical data are hard to obtain 

during this season because of frequent cloud cover. The number of observations from these two seasons (2020 and 

2021) is shown in Table 2.1. The distribution of observations is shown in Figure 2.3.
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To train the model, we developed stacks of Sentinel 1, Sentinel 2, and PlanetScope 

imagery covering each season, following the same approach we described) for our initial 

model developed for the 2020 season, with the exception that the time periods used to 

cover season 2 were necessarily shorter because the imagery was only available through 

the end of November. The following images sets were used:

 ΰ Sentinel 1 imagery covering the full year through November:

 ΰ Sentinel 2 imagery processed into two seasonal composites, one covering a wide 

period over the major season prior (typically February-October, which is needed to 

have enough imagery to deal with the high cloud cover), and the second covering 

the short season following it;

 ΰ PlanetScope basemap composites for October and November 2021.

Sentinel-1 data were processed further using harmonic regression to extract seasonal-

ity information from the time series, and a suite of vegetation indices was derived from 

the Sentinel-2 data (see Table 8.1 in Appendix).

All images were resampled to the 10 m resolution of Sentinel-1’s visual and near-infra-

red bands, and the Class 1 labels were used to extract the values from the imagery from 

the corresponding season.

https://cropanalytics.net/wp-content/uploads/2021/08/Creating-Open-Agricultural-Maps-and-Ground-Truth-Data-to-Better-Deliver-Farm-Extension-Services.pdf
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To train the model, we selected 80% of the observations from each crop type, reserv-

ing the remaining 20% for validation. Given the uneven numbers of labels across crop 

types, we balanced the sample by making several random draws from the rice and other 

crop type classes, randomly selecting subsets of pixels from each field, and averaging 

their values, in order to boost the final numbers in each class to be approximately equal 

(1000-1200 per class across training and validation samples). The training and valida-

tion samples were kept separate during this resampling process.

We used the resulting sample to train a multi-class Random Forests model, with a tree 

depth of 100 and 1000 trees. We fit two versions of the model. The first variant used 

the training set collected from both years to train the model (referred to here as the two-

year model), and the second was trained using only those labels collected in 2021 (the 

2021 model). We evaluated the variable importance of both models after training them 

the full set of predictors and then retained the 21 most important variables to train the 

final two-year model, and 28 to train the final 2021 model. The variable importance 

ranking and the cutoff used to train the final two-year model are illustrated in Figure 8.1 

in the Appendix.

The two-year model was most effective, having an overall accuracy against the reserved 

test set of 77.4% when trained with the full set of predictors, and 76% when trained 

using the subset of most important variables. In contrast, the final 2021 model’s accu-

racy was just 69.7%.

For the final two-year model, the accuracy per class varied. In terms of User’s accuracy 

(the complement of commission, or false positive, error), Rice was classified least accu-

rately (67%) and maize the most accurately (75%, Table 2.2), while the non-crop class 

was most accurately predicted (92%). The same pattern is seen in the Producer’s accu-

racy (the complement of omission, or false negative, error). For the 2021 model (Table 

2.2), which had a much smaller test sample, the User’s accuracy was lowest for maize 

(56.4%) and highest for rice (65%), although this score is lower than the least accurate 

class of the two-year model. The producer’s accuracy for maize was the highest (63%) of 

the three crop types. As with the two-year model, both accuracy measures were highest 

for the non-crop class. The higher accuracy for the two-year model presumably reflects 

its larger sample size (for both training and test sets) as well as its greater spatial cover-

age of the mapping region.
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Table 2.2: 
The Error matrix and accuracy measures for the four crop classes for the two-year Random Forest model 

(top) and the 2021 model (bottom). The overall (0), User’s (U), and Producer’s accuracies, as are total sam-

ple counts. The error matrix lists reference values in columns and predicted values in rows.

Two-year Model Maize Rice Other Non-crop Total U O

Maize

Rice

Other

Non-crop

Total

P

146

23

18

2

189

77.2

28

140

44

4

216

64.8

17

42

178

11

248

71.8

3

3

14

197

217

90.8

194

208

254

214

870

75.3%

67.3%

70.1%

92.1%

76

Two-year Model Maize Rice Other Non-crop Total U O

Maize

Rice

Other

Non-crop

Total

P

44

13

11

2

70

62.9

22

58

11

4

95

61.1

10

18

49

3

80

61.3

2

0

5

81

88

92

78

89

76

90

333

56.4

65.2

64.5

90

69.7

We used the two-year model to predict crop types for the full study area for both the 

2020 and 2021 short seasons and used the 2021 model to make a second set of maps 

for the 2021 season. The total map extent was confined to a boundary drawn around 

the outermost locations of Class 1 labels collected during the combined 2020-2021 

campaigns.
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3
Maps
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Each model produced four different probability layers, one for each crop class. We used 

two different approaches to create maps from these probability layers:

1. Thresholding: Using a predefined threshold of 0.5, pixels were classified to a par-

ticular crop type when its predicted probability exceeded the threshold. If no crop 

exceeded that threshold, we assigned the class to “other”. We excluded the non-crop 

class in this approach.

2. Max-class: Each pixel was assigned the crop type having the highest predicted 

probability.

The first approach is more conservative and identifies the highest confidence pre-

dictions, but tends to substantially underestimate the area of each crop. The second 

approach can lead to more error, as it makes a classification even when there is high 

uncertainty due to close probability values between the four classes (e.g. Maize = 0.27, 

Rice = 0.26, Other = 0.24, non-crop = 0.23).

After classification, the resulting maps were filtered through the field boundary maps. 

The classified crop types corresponding to each field were extracted, and then the entire 

field was assigned the class of the most frequently occurring crop type.

The resulting filtered crop type maps are shown in Figure 3.1, and the areas for each 

crop derived from the max-class maps are shown in Figure 3.2.
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Figure 3.2:
Areas of each crop type by year, as mapped using the max-class versions of the two-year and 2021 models.

Figure 3.1:
Crop type maps for 2020 and 2021 over the Ejura Tain region, made using two different Random Forests models and two different 

techniques for converting model predictions into maps. The top two rows show maps made with a model trained using Class 1 labels 

collected in 2020 and 2021, while the bottom row shows maps made for 2021 using a model developed using 2021 labels only. The two 

columns on the main maps show, on the left, maps made by thresholding the predicted probabilities to classify the crop in the pixel, 

and (right), maps in which each pixel was assigned to the class with the highest predicted probability. The four panels on the right show 

the PlanetScope imagery from November of 2020 (top row) and 2021 (bottom row), with the crop types in each field predicted by the 

two-year model.
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4
Summary of Findings
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4.1 Crop type areas and distributions
The maps show similar patterns in the spatial distribution of maize and rice, which are 

most concentrated in the center to the eastern half of the region. However, there were 

substantial differences in the areas of crop types between 2020 and 2021, with maize 

having a substantially larger mapped area in 2020 than in 2021, while the rice was pre-

dicted to be more abundant than maize in 2021 (Figures 3.1).

The two-year max class map found substantially more area of other crops in 2021 than 

in 2020, detecting almost no areas of “other” crops in 2020. In 2020, the non-crop class 

occupied the largest total area, even though these predictions were confined to areas 

mapped as croplands.

The 2021 max-class model showed more balance between the four classes than the 

two-year model’s predictions for 2021, which predicted substantially greater areas of 

rice and other crops than maize.

The total area of cropland mapped was 210373 ha in 2020 and 164827 ha in 2021. This 

difference indicates that the 2021 cropland map had a larger omission error than the 

2020 map.
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4.2 Sources of error
These findings more likely reflect underlying issues with the input data than actual 

differences in crop type distributions. For example, it is unlikely that the area of maize 

planted in 2021 was smaller than that of rice. However, the exact nature of these dis-

crepancies cannot be resolved in the absence of a statistically robust reference sample, 

which is currently under development (see Next Steps).

One of the primary issues impacting results is the spatially distribution of the samples. 

The collection of Class 1 labels was geographically clustered by both season and crop 

type (Figure 2.3). This clustering surely introduced biases into the models and may help 

explain the substantial variability in detected crop types between years. It also explains 

why the map accuracy assessment, even though it was based on independent samples, 

shows reasonable accuracy while the maps themselves show large discrepancies–a 

clustered sample produces misleading performance measures, just as a clustered train-

ing sample introduces model bias.

The second key data issue was the incomplete image time series for 2021. We were only 

able to collect imagery for part of the 2021 short season (through the end of November), 

and thus the input data did not capture the full crop phenology. This surely increased 

the classification uncertainty in 2021. This higher uncertainty is reflected in the smaller 

number of maize and rice fields that were detected using the thresholding approach in 

2021 relative to 2020, which reflects the fact that the predicted probabilities for each 

crop type were low.

Beyond these data issues, the local environment complicates mapping. The high cloud 

cover in this region makes it difficult to construct time series of Sentinel-2 data. Senti-

nel-2 has proven to be the most useful source of data for crop type classification in sim-

ilar environments (Azzari et al, 2021), and it also provided several of the most important 

predictors for our models. However, here we were forced to rely on temporal composites 

of Sentinel-2 constructed over broad time periods, in order to overcome the high cloud 

cover. In doing so, we lost valuable phenological information. This information loss was 

mitigated by the availability of PlanetScope imagery, which provided data during two 

of the key growing months (October and November), and was also among the most 

important predictors (Figure 8.1). Another factor is the nature of the local cropping sys-

tems, in which crops are often planted inter-mixed with trees and other vegetation that 

confuse the classification algorithms.
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4.3 Methods that improve map quality
Several aspects of our methodology proved useful to help improve results in this 

hard-to-map environment. In particular, the deep learning-based cropland mapping 

approach is effective in delineating most individual fields or small groupings of adjacent 

fields. Although this method still misses a number of fields and does commit some false 

positive (albeit at a much lower rate), both types of errors can be reduced by refining 

model architecture and collecting a larger number of labels to refine the model (e.g. 

500-1000 within the existing mapping region), divided between the 2020 and 2021 

imagery. Despite these errors, the approach appears capable of detecting the substan-

tial variation in field distributions that occur between years. The existing pre-trained 

model can be readily updated and applied to subsequent years, and transferred to dif-

ferent locations. This approach, therefore, shows great promise for tracking cropland 

change and provides an effective and scalable tool for filtering crop type maps.

With respect to crop type models, the thresholding approach applied to the Random 

Forests model holds promise as a means for improving model quality. Although we see 

here that thresholding substantially underestimated maize and rice abundance, par-

ticularly in 2021, it is nevertheless useful because it highlights high confidence predic-

tions. These predictions can be converted to synthetic labels (we refer to these as Class 

3 labels) to boost model training samples. Synthetic labels for crop type mapping is an 

approach that is also being advanced by the Radiant Earth Foundation.

In terms of data sources, using PlanetScope imagery, which has a higher revisit rate 

enabling composites that are less impacted by cloud, helped to overcome the loss of 

phenological information provided by Sentinel-2 data. Combined with Sentinel-1 data, 

this source of imagery helped to improve model accuracy. This finding is in accord with a 

recent crop type mapping study over small-scale farming systems in India, which found 

that models based on Sentinel-1 and PlanetScope predictors slightly outperformed 

models that relied on Sentinel-1 and Sentinel-2 predictors, due to the improved spatial 

resolution of PlanetScope (Rao et al, 2021). This benefit of using PlanetScope imagery 

should continue to increase (if budgets allow for imagery purchase) as the recently 

launch Super Dove satellites have improved spectral resolution, which will further 

improve classification accuracy.

Although untested in this study, data fusion approaches that combine multiple image 

sources, including PlanetScope, Sentinel-1, Sentinel-2, Landsat, and even MODIS (e.g. 

Houbourg et al, 2018; Kpienbaareh et al, 2021; Orynbaikyzy et al., 2020), may further 

improve crop type, classification models. Fusion methods that incorporate PlanetScope, 

thereby increasing the spectral content of predictor data while achieving high spatial 

and temporal resolution (e.g. Houbourg et al, 2018), also hold promise for helping to 

improve classification accuracy where crop types are mixed or planted in very small 

plots.
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4.4 Key Findings
The following key findings emerged from this project:

 ΰ A convolutional neural network (CNN) applied to PlanetScope imagery showed 

promise for mapping annual changes in crop field boundaries in highly dynamic 

agricultural landscapes. These field boundary maps provided an effective filter 

for crop type mapping models, although further improvements are still needed to 

reduce the CNN’s omission error;

 ΰ Geographic clustering in the groundtruth data led to biased models and made it 

difficult to reliably assess model performance. Both of these shortcomings may be 

remedied by using Class 2 labels created from drone imagery that was collected 

following a probability-based sample design;

 ΰ The number and geographic distribution of training labels may be further improved 

through the use of synthetic Class 3 labels, which are drawn from the highest 

confidence predictions resulting from the initial crop type maps;

 ΰ Using PlanetScope imagery helped to mitigate the loss of information from Senti-

nel-2 due to high cloud cover.
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5
Next Steps

During the next months we will take several steps to improve 
these results and use these to develop reliable estimates of crop 
type distributions in the study region.
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First, we will complete the full-time series of imagery for the current season after Janu-

ary, and retrain the model, which should improve with more phenological data.

Second, we will develop Class 2 labels from visual interpretation of UAS imagery that 

was collected during a drone collection campaign conducted in November/December in 

this region, following a probability design. These data will allow us to improve the spa-

tial and class distribution of training samples, and provide a statistically independent 

reference sample that can be used to reliably assess map accuracy.

Third, we will use the thresholding approach to develop synthetic Class 3 labels. We will 

add these and a portion of Class 2 labels to the training sample and use to retrain the 

model and assess performance gains.

Fourth, we will replace the Random Forests model with two neural network approaches 

that we are developing under Phase 2 of this project.

Fifth, we will continue to refine the deep learning-based cropland mapping approach, in 

order to further improve maps used for filtering crop types.
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6
Data Availabiltiy

The crop type map and labels are hosted on a public bucket 
on AWS S3. We created a GitHub repository that provides 
instructions for viewing and downloading these data. They are 
also available on a public Box folder for download by users who 
cannot access AWS resources.

This repository is currently private. Upon approval of this 
deliverable, it will be made open so that the data will be publicly 
available.

The labels will also be submitted to Radiant MLHub following final 
validation by the Farmerline team.

https://github.com/agroimpacts/opencropmaps
https://airg.app.box.com/s/s9vhe5zy39e7oljc233n4bc3fxcow5fe
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8
Appendix

This appendix contains further details  
on methods and results.
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8.1.1 Derived image features

From the processed imagery, we derived a number of additional features to be used as 

predictors. We fit a “Least Absolute Shrinkage and Selection Operator” (LASSO) regres-

sion to the Sentinel-1 time series, resulting in 6 coefficients extracted from the full 

annual time series, which are informative about vegetation phenology. We also derived 

the following vegetation indices from Sentinel-2 data (following Jin et al; 2019): 

Table 8.1: 
Vegetation indices derived from the bands of Sentinel-2. All indices were derived for each seasonal composite.

Index Formula

NDVI 

GCVI 

RG1_GCVI

RG1_GCVI

MTCI

MTCI2

REIP 

NBR1

NBR2

(NIR - Red) / NIR + Red)

(NIR/Green) - 1 

(NIR/RedEdge1) - 1 

(NIR/RedEdge2) - 1

(NIR - RedEdge1) / (RedEdge1 - Red)

(RedEdge2 - RedEdge1) / (RedEdge1 - Red)

700 + 40 * ((Red + RedEdge3) / 2 - RedEdge1) / (RedEdge3 - RedEdge1)

(NIR - SWIR1) / (NIR + SWIR1)

(NIR - SWIR2) / (NIR + SWIR2)

Index Formula

NDTI

CRC

STI

(SWIR1 - SWIR2) / (SWIR1 + SWIR2)

(SWIR1 - Green) / (SWIR1 + Green)

SWIR1 / SWIR2
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Figure 8.1:
Variable importance is assessed in terms of the mean decrease in model accuracy when the variable is removed. Variables named 

‘PLA_Oct’ and ‘PLA_Nov’ refer to PlanetScope basemaps from October or November of either year (depending on which season the 

corresponding label was collected in), followed by the band number (indicated after the underscore). Sentinel-2 bands are those 

beginning with ‘B’, followed by a channel number and interval number (1 = February - October 2020; 2: October 2020 - January 2021). 

Vegetation indices are described in Table 2.2. Sentinel-1 harmonic coefficients for the VV or VH polarizations are indicated by their 

coefficient number. The red line indicates the threshold used for retaining variables to use in the final model.
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8.1.2 Model variables

The ranking of the importance of variables in the two-year Random Forests models is shown in Figure 8.1. 
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