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Introduction
The number of people experiencing food insecurity has increased for the third consec-

utive year, a worrying reversal of progress since the 1990s (FAO, 2020). Addressing food 

insecurity and achieving the United Nations' second sustainable development goal to 

eradicate hunger by 2030 will require more timely and accurate information on agri-

cultural yield, food availability, and land use, with data that are relevant for the most 

vulnerable populations. Special attention should focus on smallholder farming, which 

continues to dominate the agricultural landscape of sub-Saharan Africa, Asia, Latin 

America, and the Middle East. While the definitions of a "smallholder farm" differ, as of 

2018, 475 million out of 580 million farms worldwide were smaller than two hectares in 

size and that more than 500 million were family-operated (Lowder et al., 2018). These 

farms are often intercropped, used primarily for home consumption, and operated by a 

single household or family. 

Ensuring better availability and access to actionable data can be empowering and 

transformational for smallholder farmers. For example, timely advisory information can 

help drastically improve productivity and facilitate more efficient harvesting, process-

ing, and marketing of crops (Chew et al., 2020). Identifying regions where agricultural 

planting or crop development is delayed allows for the informed allocation of resources 

and mitigation of potential food insecurity (Brown and Funk, 2009). However, in many 

low-income countries where the need for crop analytics is greatest, agricultural data are 

unavailable or lack the accuracy, centralization, structure, and consistency required for 

farmers and stakeholders to achieve timely and informed decision-making (Weersink 

et al., 2018).
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The advent of small unmanned aerial vehicles (UAVs) and 

remote sensing products with increasingly fine spatial 

resolutions has transformed the capabilities for crop 

analytics, offering an unprecedented opportunity to 

collect and provide better information to benefit small-

holder farmers. However, remotely sensed data alone are 

not sufficient, either because the data do not have the 

required spatial or temporal resolution, or because the 

data are not sufficiently accurate for a given location. 

Ground-truth data  can fill in a key gap by providing key 

variables for informed crop analytics to overcome this 

issue. To date, acquiring timely and accurate field data 

in areas of smallholder agriculture has been challenging 

due to a lack of technical and economic resources, the 

large number of small plots, intense intercropping, and 

a high diversity of crop types within those plots. (Chew 

et al., 2020). While the challenges are many, progress in 

the development of remote sensing technologies over 

the last decade offers new and existing approaches to 

advance crop analytics in smallholder settings. New 

technologies and analytical approaches provide unprec-

edented access to data, both in time and space. 

In this report, we review the state of the science in the 

use and collection of ground truth observations to 

enable crop analytics for smallholder agriculture. The 

report has four chapters in addition to the Introduction – 

each focusing on a key crop variable. The second chapter 

provides a review of approaches to mapping crop field 

boundaries. In the subsequent chapter, we review data 

and techniques used to map crop types. The fourth 

chapter concerns yield estimation, arguably one of the 

most critical and challenging agricultural indicators. The 

final section concludes with a set of recommendations 

for advancing the agenda of crop analytics for small-

holder farmers.

¹  While the term ground truthing is often used in the crop analytics literature, ensuring that the ground truth has been observed 

at selected locations, even if observing in situ, is not always feasible. Hence, the term reference observation is preferred in the 

literature. A reference observation is the most accurate available assessment of the true condition of the land surface (Stehman 

and Czaplewski, 1998). Here, ground truth and reference observation are synonymous.
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2
Ground truth data for  
field boundary mapping

Accurate knowledge of field boundaries' location and geographic 
extent are critical for a wide variety of decisions and crop 
analytics applications, including improved crop type mapping 
and yield estimations (Wagner and Oppelt, 2020). Most 
field boundary maps have typically relied on labor-intensive 
field campaigns or existing administrative maps, which are 
often outdated or inaccurate. The increasing availability of 
high-resolution imagery drones, phones with integrated GPS 
(global positioning system) capabilities, and handheld devices 
have opened new opportunities to improve the availability and 
reliability of field boundary ground-truthing. 
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Table 1: 
Overview of the remote sensing data sources mentioned in this chapter. 

Platform 
or Sensor

Historical 
Availability

Spatial res. 
[m]

Spectral res. 

[bands]

Temp-oral 

res. [days]

Examples  
in Crop  
Analytics

Comments

MODIS Continuously 

from 2000 

onwards

250, 500 

and 1,000

32 1 Most 

examples 

use the ET 

product; e.g., 

Tang et al. 

(2009)

Very coarse resolution  

limits relevance for 

smallholder agriculture

Landsat 4-8 From 1984 

onwards but 

with gaps 

during the 

90s in certain 

parts of the 

world

30 L4,5: 7

L7: 8

L8: 11

16 Roy and Yan 

(2020)

Long time series allows  

for monitoring change;  

30 m is too coarse for  

many smallholder 

applications

Sentinel 2 Continuously 

from 2017 

onwards

10 (B, G, 

R, NIR); 20 

(SWIR)

4 at 10 m;  

6 at 20 m

5 Immitzer et 

al. (2016)

10m resolution, free 

data policy, and growing 

time series will make S-2 

increasingly relevant for 

smallholder crop analytics  

... Continues to next page.

These technologies, together with affordable high spatial and temporal resolution data 

collected by satellite constellations such PlanetScope and high-quality continuous mis-

sions with free data policies such as the Landsat and Sentinel families, are all valuable 

assets for crop management that were not readily available just a few years ago. Data 

collected by UAVs or very high resolution (VHR) satellites have a spatial resolution that 

allows for the collection of reference observations that can augment or even replace 

observations collected on the ground. Table 1 below highlights different remote sensing 

technologies that have augmented crop analytic opportunities.
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Table 1. 
Continued from previous page. 

Platform 
or Sensor

Historical 
Availability

Spatial res. 
[m]

Spectral res. 

[bands]

Temp-oral 

res. [days]

Examples  
in Crop  
Analytics

Comments

PlanetScope Continuously 

from 2016 

onwards

< 5 4 (B, G,  

R, NIR)

1 Kpienbaareh 

et al. (2021)

Data is not free other than  

in the tropics through 

the NICFI program; high 

potential data source for 

smallholder agriculture due 

to spatial resolution

Miscellaneous 

VHR satellites

IKONOS at 1 m 

res. from 1999

Down to 0.4 Varies but 

often B, G,  

R, NIR

Varies Du et al. 

(2019)

Often expensive and 

temporal resolution can  

be limited. But very high 

spatial resolution makes 

these products highly  

useful for smallholder 

applications

UAVs - Down to a 

few cm

Varies but 

often B, G,  

R, NIR

- Hegarty-

Craver et al. 

(2020)

Extremely high resolution 

with high potential, 

especially in crop health  

but across a smaller area 

than satellite imagery 
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2.1 Mapping of Field Boundaries: 
Review of different approaches
Boundaries of agricultural fields are important for a wide range of applications, but 

collecting, mapping, and maintaining boundary information is often costly and difficult. 

Further, a uniform definition of a boundary is complicated as fence lines, ownership, 

different crops in the same field, different crop parcels, different management prac-

tices, and other factors all constitute relevant boundaries. Rydberg and Borgefors (2001) 

define boundaries of crop fields as the locations "where a change in crop type takes 

place or where two similar crops are separated by a natural disruption in the landscape, 

like a ditch or a road." North et al. (2019) suggest a broader definition that includes dif-

ferences in crop management while arguing that methods for boundary mapping must 

apply to large areas with the ability to keep boundary information up to date. For this 

paper, we define field boundaries according to the characterization proposed by North 

et al. (2019).

The development and expanded use of smartphones, or handheld devices that combine 

cellular and computing functionality, significantly enables the scaling of crop analytics. 

Crucially, smartphones are affordable, and their use is widespread, including in low-in-

come countries. The combination of accessibility, computing, and remote sensors have 

made smartphones an important tool for many farmers; for example, 98% of the farm-

ers in smallholder farming communities in Kenya own a cellphone (not necessarily a 

smartphone), and 25% make use of the device in farming activities (Krell et al., 2020). 

Of particular interest is the use of smartphones for collecting data on the ground to 

delineate boundaries and to calculate the area and perimeter of crops fields. With 

built-in GPS in tablets and smartphones, the user can collect coordinates along the 

boundaries of fields, or by automatically collecting coordinates when moving along field 

boundaries. The GPS receivers in today's tablets and smartphones achieve a horizontal 

positional error of 5 m (this is spatially finer than the 10 m resolution that Sentinel-2 

imagery offers). If higher accuracy is required, an external GPS receiver connected to the 

smartphone will achieve real-time positioning within a few centimeters. 

Several smartphone applications are used for field boundary delineation (Figure 1 shows 

an example of screenshots from the GPS Fields Area Measure application by Farmis; 

http://farmis.lt). The interface for collecting coordinates on the ground shows the user's 

location and recorded coordinates on top of high-resolution data from Google Earth. 

While the use of smartphones with built-in GPS technologies is generally appealing for 

field boundary mapping, the accuracy of the mapping outputs largely depends on the 

degree to which the data collection platform is user-friendly. Without clear instructions 

or prior mapping experience, users may end up collecting incorrect data. 

http://farmis.lt
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Figure 1:
The GPS Fields Area Measure 

application for collecting 

coordinates for field boundary 

delineation.

The collection of ground data to delineate field boundaries using handheld devices is straightforward and effective 

for small areas, but manual ground data collection might not be feasible for delineating field boundaries over larger 

areas. In those instances, analysis of high-resolution imagery obtained from remote sensing instruments might be 

more adequate.

The spatial resolution of satellite data is often too coarse for crop analytics purposes, especially for smallholder farm-

ers. ESA's Sentinel-2 has bands with a higher spatial resolution of 10 m, and has been used successfully for boundary 

delineation (e.g., Masoud et al., 2020). However, for some applications, very high resolution (VHR) data (<5 m) are 

required. While VHR data are typically not free of charge, the spatial resolution is often finer than the positional error 

of a smartphone GPS and allows for delineation of crop boundaries in smallholder settings. The most basic approach 

to boundary mapping is manual delineation directly in the imagery through digitization in GIS software. Using Quick-

Bird imagery (0.6m), North et al. (2019) delineated 273 crop fields by digitizing agricultural holdings (Figure 2). As with 

ground-based boundary mapping, manual delineation techniques rely on the user's knowledge of the location of the 

boundaries and can be potentially time-consuming. 

Figure 2:
Manual delineation of crop field 

boundaries using QuickBird satellite 

image (North et al., 2019).
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An alternative to the manual digitization of boundaries is automatic classification, in which a small sample of ground 

truth data are used to train an algorithm that identifies features of interest in the imagery. Such approaches are par-

ticularly useful when the features of interest have spectral properties that remote sensors can measure (For example, 

satellite-derived indices can measure crop type, land cover, and vegetation condition). For mapping field boundaries, 

the most widely used methods rely on edge detection and segmentation (North et al., 2019). An edge detector is a filter 

that moves across the imagery in a rectangular window and does not usually require any training or ground truth data. 

More relevant to smallholder crop analytics is segmentation and object-based image classification. Both are processes 

in which objects on the land's surface composed of pixels are identified and classified in the imagery (Blaschke, 2010). 

Object-based image classification takes advantage of the high spatial resolution of the data while not being ham-

pered by the lack of spectral information. Classifying objects instead of pixels have been shown to yield more accurate 

maps of crop fields (Duro et al., 2012; Li and Shao, 2014), and is the recommended approach for extracting thematic 

information from high-resolution data.

Access to object-based image classification has been hindered by the high costs associated with data inputs 

(high-resolution satellite imagery) and software (e.g., Trimble eCognition and ENVI Crop Science). In recent years, how-

ever, open-source software alternatives have emerged. The Orfeo Toolbox (https://www.orfeo-toolbox.org/) contains 

a segmentation algorithm that creates segments or objects corresponding to features on the land surface based on 

spectral and spatial properties, as well as machine learning classifiers such as Random Forest.

A new and promising technique uses more 

advanced machine learning methods such as 

deep learning. The TensorFlow Development in 

Google Earth Engine, for instance, is an open-

source machine learning platform that supports 

such methods, providing access to both advanced 

processing methods and a range of satellite data. 

Saraiva et al. (2020), who mapped center pivot 

irrigation systems in Brazil, illustrates how these 

resources can be leveraged for field boundary 

mapping. The pivots vary greatly in size, and the 

spatial resolution of Landsat or Sentinel-2 would 

be insufficient. Instead, the authors created 

mosaics of PlanetScope data (3 m resolution) 

and collected training, validation, and testing 

data in the imagery. The authors then developed 

a model based on a neural network architecture 

(U-Net, initially developed for segmenting images 

in medical applications). The entire analysis and 

model were built using the TensorFlow framework 

in Google Earth Engine (Figure 3).

Figure 3:
From Saraiva et al. (2020): pivots in Brazil identified in PlanetScope data by a deep learning model based on the TensorFlow framework.

https://www.orfeo-toolbox.org/
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2.2 The use of unmanned aerial  
vehicles in ground-truthing
Ground truth data are essential for calibrating and interpreting the results of remotely 

-sensed analyses, especially in areas where there is limited prior knowledge about the 

reality on the ground. The use of unmanned aerial vehicles (UAVs) has been promoted to 

rapidly collect large amounts of ground truth data at a lower cost than field campaigns. 

UAVs are unique in that they can provide data at extremely high resolution within a 

small study area (less than 100 ha). Because of the small area covered by UAVs and 

because the operator must be physically present when the aircraft is operating, UAV 

data do not replace satellite data; instead, UAV data are suitable for assisting in the 

collection of ground-truth observations . In the discussion above, a distinction was 

made between observations of ground-truth conditions collected in situ and observa-

tions collected in remotely sensed imagery. UAV data erase that distinction by being a 

remote sensing instrument and providing visual information close to what an observer 

on the ground would see. Hegarty-Craver et al. (2020) present an application of UAVs 

for ground truth data collection in Rwanda: the researchers collected a large dataset 

consisting of observations of mono-cropped fields, small intercropped fields, and natu-

ral vegetation in smallholder farms which was used to train and test a machine learning 

model for classification of crop fields in Sentinel-1 and -2 data, achieving accuracy rates 

of 83% and 91% respectively. 

² UAVs are primarily tools for reference data collection; the topic is revisited in the Appendix.
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2.3 Using existing datasets 
Data collection in situ may not always be feasible, either because it is prohibitively 

expensive or because of security issues. Global public data can fill this gap: several 

open-access large-scale datasets contain agricultural information, and this trend is 

expected to continue. Some of the most popular publicly available products include:

 ΰ GFSAD30 (Global Food Security Analysis-Support Data at 30 Meters;   

https://www.croplands.org), provides global maps of cropland products at 30 m resolution 

(Thenkabail et al., 2012; Teluguntla et al., 2015). The datasets are based on Landsat data and 

provide maps of croplands globally, including irrigated and rainfed croplands for South Asia, 

Iran, Afghanistan and Australia. 

 ΰ The GLanCE project (Global Land Cover Mapping and Estimation; http://sites.bu.edu/

measures/). If land-use change either to or from cropland is of interest to users, this product 

should be highly relevant. The GLanCE datasets are not yet available for all continents, but 

tools for using the data and datasets for South and North America are accessible at:  

https://code.earthengine.google.com/?scriptPath=projects%2FGLANCE%3AAPPS    

 ΰ The newly released iSDAsoil dataset provides soil properties and agronomy maps at 30 m res-

olution across Africa (https://www.isda-africa.com/isdasoil).  The datasets contain predictions 

based on 130,000 soil samples for various chemical, physical, and agronomic soil properties.  

 ΰ A global land cover product at 10 m spatial resolution -- The Esri 2020 Land Cover – based 

on Sentinel-2 data was released in 2021. The data is available through the ArcGIS Living 

Atlas of the World (https://www.arcgis.com/apps/instant/media/index.html?appid=f-

c92d38533d440078f17678ebc20e8e2). The product has Crops class in addition Water, Trees, 

Grass, Flooded Vegetation, Scrub/Shrub, Built Area, Bare Ground, Snow/Ice, and Clouds.

 ΰ Another 10 m map of global land cover, titled Dynamic World, is being produced by World 

Resources Institute, National Geographic, and Google. If successful, the product is likely to be 

of high relevance for the smallholder agriculture; it has three tiers of a hierarchical cropland 

class: Crops (Tier I), Row/Paddy/Other (Tier II), Maize/Soy/Wheat/Rice/Other (Tier II). The 

product is scheduled for 2021: https://drive.google.com/file/d/1JW9Egg05I0gGHC6a6hHR1Hz-

bh55DARCM/view; https://www.youtube.com/watch?v=VuALyQ6eoq4&ab_channel=-

GoogleEarth

 ΰ The Global Hyperspectral Imaging Spectral-library of Agricultural Crops (GHISA) is a library 

of spectral signatures for wheat, rice, corn, alfalfa, and cotton in different growth stages for 

Asia and the United States (Aneece and Thenkabail, 2018). USGS maintains the data and are 

available via Google Earth Engine and the LP DAAC. While these data are not maps, a library 

of spectral signatures is needed for splitting the cropland classes in the GFSAD30 and GLanCE 

datasets into different crop types.

 ΰ The Copernicus Global Land Service from ESA provides annual maps of global land cover at 

100 m resolution, including stable cropland and expansion of croplands on behalf of other 

land covers: https://land.copernicus.eu/global/products/lc 

 ΰ The Global Cropland Extent product (https://glad.umd.edu/dataset/gce/global-cropland-ex-

tent) is generated using MODIS data at 250 m spatial resolution but has the advantage of 

providing pixel-level probability of the presence of cropland probability layer (Pittman et al., 

2010). In addition to the continuous probability, the product is a discrete cropland/non-crop-

land indicator.

 ΰ Radiant MLHub (https://www.mlhub.earth/) provides a growing suite of labels based on 

machine learning applications on Earth observation products. MLHub was initially developed 

to train geospatial data as well as hosting machine learning models, and is becoming an 

increasingly useful library for public labels.

https://www.croplands.org
http://sites.bu.edu
https://code.earthengine.google.com/?scriptPath=projects%2FGLANCE%3AAPPS
https://www.isda-africa.com/isdasoil
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://drive.google.com/file/d/1JW9Egg05I0gGHC6a6hHR1Hzbh55DARCM/view
https://drive.google.com/file/d/1JW9Egg05I0gGHC6a6hHR1Hzbh55DARCM/view
https://www.youtube.com/watch?v=VuALyQ6eoq4&ab_channel=GoogleEarth
https://www.youtube.com/watch?v=VuALyQ6eoq4&ab_channel=GoogleEarth
https://land.copernicus.eu/global/products/lc
https://glad.umd.edu/dataset/gce/global-cropland-extent
https://glad.umd.edu/dataset/gce/global-cropland-extent
https://www.mlhub.earth/
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2.4 Summary and recommendations
Field boundary mapping is one of the most basic yet important indicators for crop 

analytics, enabling various decisions and further analysis. Relevant techniques for field 

boundary mapping range from handheld devices to global satellite systems. The most 

suitable tool depends on the objective of the application. Global satellite systems are 

relevant if changes in crop field size, land use conversions, crop types, etc. that occur 

over time and space are of primary interest. Time series-based approaches still rely 

largely on Landsat data, which have a relatively coarse resolution of 30 m and are 

therefore of lesser relevance for smallholders. As the record of Sentinel-2 data at 10 m 

spatial resolution continues to expand, time series-based monitoring of croplands at 

high resolution will grow in importance.  

If small field boundaries and crop type are of interest, data with a spatial resolution 

finer than 5 m might be necessary. New products such as PlanetScope data with a 

resolution of about 3 m are freely available from 2016 onwards in the tropics, offer-

ing exciting opportunities to improve field boundary mapping. With the exponential 

increase in smartphone accessibility and processing power, it is likely that mobile com-

puting in ground-truthing will greatly impact smallholder farming in the future. Finally, 

deep learning techniques and the increasing use of UAVs to reduce the effort required 

to collect ground truth data are auspicious developments that will revolutionize crop 

analytics in the coming years. 
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3
Crop Type Mapping

Smallholder agriculture is of global significance, but data on 
the type, location, and production of smallholder crops are 
often scarce. The lack of crop type data makes it challenging 
to track smallholder yield progress, understand land cover 
change, analyze farm management strategies, and design 
targeted agricultural policies (Wang et al., 2020). If properly 
leveraged, technological developments in mobile solutions 
and remote sensing could potentially close or mitigate the 
data gap. Specifically, these advances can help ground truth 
data collection. Observations of crop type can either be used 
as training data in subsequent analyses to make maps, or be 
collected at locations selected by probability sampling to make 
area estimates (see Appendix). 
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3.1 Crop type mapping:  
Review of different approaches
Accurate detection and mapping of crop types in smallholder farms are particularly challenging given that holdings are 

rarely homogeneous in space and time, with intercropping and crop rotation practices providing an additional source 

of complexity. Supervised classification techniques using high spatial and temporal resolution imagery like Sentinel-1 

can provide accurate seasonal crop type maps (Kenduiywo et al., 2017). However, recent work by Peter et al. (2020) 

suggests that to be operational, data should have a spatial resolution similar to the scale of the crop being studied 

(e.g., in the case of corn, the appropriate resolution is ~14–27 cm). The implication is that even high-resolution satellite 

data such as Sentinel-1 and -2 at ~10m, SPOT 6  at ~6 m, Planet at 3 m, and Pléiades at 2 m, – are too coarse to inform 

on crop health in smallholder agriculture. To overcome this challenge, smartphones and UAVs have been proposed as 

useful technologies. 

Smartphone use among smallholder farmers is often limited to location information enabled using GPS (e.g., delineat-

ing field boundaries) or to retrieve basic information; more advanced use of smartphones in crop analytics is still rare 

(Mendes et al., 2020). Still, the ever-increasing accessibility, computing, and hardware capabilities of handheld devices 

suggest that the importance of smartphones in crop analytics will continue to grow. In a review of recent advances in 

the field of smartphone-based agricultural technologies, Mendes et al. (2020) list several applications that use image 

recognition, machine learning, and artificial intelligence to support crop-related activities. Most applications involve 

the user collecting data using smartphone sensors (either built-in or attached), which are then converted to infor-

mation using mobile machine learning and artificial intelligence algorithms together with databases of training data. 

The result is an almost instant acquisition of important variables; current applications support, in addition to crop 

type mapping, crop protection and diagnosis, crop nutrition and fertilization, crop irrigation, crop growth, and canopy 

management, and crop productivity and yield (Mendes et al., 2020; see Figure 4).

Figure 4:
The Plantix application by PEAT GmbH (https://plantix.net/en/) on a smartphone; the application identifies crop type and makes diag-

noses of pest damages, plant diseases, and nutrient deficiencies by processing photos of crops using mobile machine learning and a 

database of training data.

https://plantix.net/en/
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Ground observations of crop type, collected and pro-

cessed in smartphones using the Plantix application, 

can be used to make detailed maps of crop types in 

smallholder agriculture. In their analysis, Wang et al. 

(2020) used a total of 2 million geolocated photos with 

crop type labels collected by local farmers in two Indian 

states from 2017-2019 using the Plantix application. 

The photos were combined with time-series data from 

Sentinel-2 to a train neural network to map rice, cotton, 

and other crops at 0.3 m resolution. In this example, only 

photos of crops were collected by farmers. The crop type 

labels were identified by machine learning using a large 

database of reference crop photos.

Similar approaches combining ground truth observa-

tions of crop type and machine learning algorithms have 

been successfully used to map crop types in Malawi (Kpi-

enbaareh et al., 2021).  In this case, ground truth obser-

vations of crop type were collected by visual inspection 

instead of using deep learning to determine crop type (cf. 

Wang et al., 2020). In the Kpienbaareh et al. (2021) anal-

ysis, ground truth observations at 1,170 locations were 

used for training.

A third approach for collecting ground truth data relies 

on RGB drone images and transfer learning techniques, as 

recently tested in Malawi and Mozambique (Nowakow-

ski et al., 2021). The protocol developed by Nowakowski 

et al. (2021) included a data collection campaign using 

drone imagery, a field validation campaign whereby 

enumerators collected information on crop types (among 

other variables), and then the use of transfer learning to 

reduce the amount of reference data required to gener-

ate a model. The reference observations were collected at 

1,000 locations – comparable to the sample used by Kpi-

enbaareh et al. (2021) but considerably lower than in the 

Wang et al. (2020) analysis – highlighting the challenge 

of determining how much data should be collected on 

the ground. The map accuracies in the three studies were 

reportedly high, at 75-90%. Importantly, Nowakowski et 

al. (2021) showed the potential to use transfer learning 

approaches to reduce the amount of ground truth data 

required for crop type mapping. 
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The diverging amount and types of data and analytical approaches used in these studies highlight the difficulty of 

providing concrete recommendations when mapping crop types in smallholder systems. Further research, facilitated 

by the increasing availability of methods and technologies, will likely help resolve these questions. Below are key com-

ments and overarching recommendations about the use of ground truth data for map type mapping:

1. Compared to parametric classifiers such as maximum likelihood, an essential aspect of advanced machine learning methods 

is that the results are not negatively impacted by having "too much" training data.  However, it is difficult to provide general 

recommendations on the amount of data needed. The availability of satellite data of sufficient resolution for collection of 

ground truth observation in the imagery has increased in recent years, which has greatly reduced the time and cost associated 

with ground truth collection (note that ground truth observations collected in imagery instead of in situ are often referred to as 

reference observation). Further, the availability of crowd-sourced ground truth data collected and processed using smartphones 

and which can be used as training data continues to improve (Wang et al., 2020). 

2. A portion of ground truth data is often used for validation. Note that validation data cannot be used to make point estimates of 

population parameters such as areas and map accuracy unless the ground truth data were collected under a probability design 

(see Appendix). 

3. Deciding which imagery to use will depend on the situation.  A general recommendation is to use imagery of a spatial resolution 

sufficient to observe ground truth conditions in the imagery (i.e., being able to delineate crop fields and identity crop type). For 

smallholder farms, very high-resolution data are required. PlanetScope data are becoming increasingly important, and are now 

provided free of charge for the pantropic region from 2015 onwards through Norway's International Climate & Forests Initiative 

(Figure 6). However, at a resolution of ~3.7 m, PlanetScope data may only be useful for identifying field boundaries rather than 

specific crop types. Higher-resolution data (~1 m) would be needed to clearly delineate crops. Still, open access, high-resolution 

data offer an opportunity to obtain training data in non-traditional ways as well as potentially collecting reference observations 

throughout the cropping cycle. Such observations can augment or even replace data collected on the ground, and be used to 

train machine learning algorithms for crop type mapping. 

Figure 5:
Areas for which free Planet data are provided through Norway's International 

Climate & Forests Initiative (from https://www.planet.com/nicfi/). 

https://www.planet.com/nicfi/
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Unfortunately, data with areas that are too large to be mapped by VHR data, that 

change over time, or data with longer historical availability often have coarser spatial 

resolutions. The Landsat missions, which started in 1972, provide imagery at a 30 m res-

olution, and these datasets are often used for time-series analysis given the availability 

of a 50-year dataset. The move away from analysis based on individual imagery to time 

series analysis significantly shifted the paradigm in remote sensitive science over the 

last decade. 

Time series-based algorithms operate on pixel-level time series, which tend to be rather 

data-intensive. However, implementation on computing platforms such as Google Earth 

Engine has alleviated previous bottlenecks of storage capacity and computing power 

required to run the algorithm. Users can now focus on collecting relevant training data 

for the classification of the time series segments. 

Time series-based algorithms are data-agnostic but continue to rely on Landsat data, 

primarily because of the long and consistent data record. Landsat imagery has been 

used to assess within-field variations (edaphic, crop treatment, crop disease, drainage, 

etc.) across the U.S. (Roy and Yan, 2020). Of importance to crop mapping is the ability of 

these algorithms to use both spectral and temporal information to classify land surface 

features. Certain crop types have similar spectral signatures, which makes them hard to 

separate in a single image classification. However, if their phenology, rotation cycle, and 

spectral temporal behavior are different, the time series data analysis is likely to allow 

the different types to be discerned. 

Judging by the lack of examples in the literature, the spatial resolution of Landsat is 

too coarse for studying smallholder agriculture. Sentinel-2 at 10 m spatial resolution 

has been used successfully in object-based approaches to crop species classification 

(e.g., Immitzer et al., 2016), but because of the relatively limited length of the time series 

(since 2015 with Sentinel-2A; 2017 with both Sentinel-2A and -2B) the experience of 

using Sentinel-2 data with time series-based algorithms is limited.  Soon, however, time 

series-based algorithms with 10 m Sentinel-2 data will likely provide information and 

products of high relevance for crop management. 

The role of ground truth/reference data is equally important in time series-based 

approaches as in previously mentioned approaches. The main role of the reference 

data is to train a classifier to map features on the ground over time. Time series data 

serve another important role in ground-truthing by providing a temporal dimension to 

observations not available when collecting observation in situ or in-field imagery. If ref-

erence observations of ground conditions over time are of interest, it is recommendable 

to study time series of reflectance data in addition to in situ observations or imagery 

interpretation.   
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3.2 Summary and recommendations
Crop type mapping is a key variable in crop analytics, providing useful insights on farm 

management and crop dynamics, and can ultimately help provide tailored information 

at the farm level. Crop type mapping generally requires information at extremely fine 

spatial resolutions, often in the range of tens of centimeters, which satellite remote 

sensing cannot offer at scale. The advent of handheld devices (primarily smartphones 

with built-in cameras and GPS) and unmanned aerial vehicles (UAV), offer an oppor-

tunity to collect data at the fine scales required for crop mapping. Evidence suggests 

that data collected through smartphones and UAVs can help detect crop types with 

relatively high accuracy in diverse geographies. Machine learning, deep learning, and 

transfer learning techniques have helped augment the capabilities of ground-truthing 

by reducing the amount of data required to create crop-type accurate maps. 

However, a key question remains: How much data is enough? It is hard to provide robust 

recommendations for how much training data to collect, and users often resort to trial 

and error. Finding the minimum amount of data that provides optimal model accuracy 

will enable better decisions about how much time and resources to spend on field 

campaigns. Analysis in Ethiopia and Malawi suggests that model performance varies 

depending on geolocation strategies: peak performance is achieved with 2,500 plots 

when utilizing “boundary points”; 4,000 plots if relying on “convex hull”, “hull mean”, 

“plot points”, and “plot mean”; and around 4,500 plots when using “corner” and “cen-

troid” approaches. After these points, models stop learning and additional data only 

provide marginal improvements in model accuracy (Azzari et al., 2021). Additional work 

is still required to understand whether these findings can be applied universally.

Crop type mapping is made more difficult by the nature of inter-and intra-seasonal 

crop changes within a plot. Understanding how crop patterns have changed over 

the last decades is critically important for some crop analytics applications—for 

example, understanding the impact of climate change on smallholder agriculture 

to inform climate change adaptation strategies. Few datasets currently exist to 

help answer this question, and the default product is still Landsat. With new sat-

ellite products becoming increasingly available, the possibility to conduct more  

detailed time-series analysis will only increase, but it may be a few years before sub-

stantial work in this direction can be carried out. 
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4
Yield Estimation

One of the most important goals of crop analytics is yield 
estimation. While considered the most critical indicator, directly 
relevant for food security and livelihood measures, crop yield 
is a challenging indicator to measure, especially in smallholder 
farms. Crop yield, or land productivity, is computed as the ratio 
of the total mass of harvestable components (e.g., grains for 
cereal crops) to the farm area. The crop cut method is the most 
commonly used approach for yield estimation – it is considered 
to be the most reliable and objective approach for estimating 
yields (FAO, 2017). Unfortunately, the process can be highly 
labor-intensive and time-consuming.
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In India, for example, a typical crop-cut yield measurement takes about two hours per plot, which poses significant 

challenges for scaling across large areas (S. Rupavatharam, personal communication, October 15, 2020; Figure 6). To 

overcome these logistical challenges, remote sensing-based yield estimation pilots are used. These methods leverage 

an empirical relationship between field-level crop yield and satellite remote sensing data, either using a vegetation 

index as a proxy of crop growth or a data assimilation technique with model-estimated crop growth and yield. How-

ever, most of these methods are developed in largely homogeneous landscapes often found in the U.S. and China (e.g., 

Lobell et al., 2015). Largely unsolved challenges remain to apply these methods to smallholders farming systems in 

developing countries, where agricultural land uses are heterogeneous, farm sizes are smaller and mixed- and inter-

cropping systems are commonly practiced.

Figure 6:
Crop-cut yield measurement steps at a paddy rice field in India. Source: CropIn

The rapid development of remote sensing technologies, especially improvements in spatial and temporal resolution, 

makes satellite remote sensing data suitable to monitor dynamics in crop productivity in a precise and timely manner 

at scale. Analytical models can also play a significant role, describing the complex physical processes that underlie 

crop growth, transpiration, and senescence to provide high-resolution estimates and forecasts of crop production and 

yields. When historical crop production data are available, models are often based on statistical regression (Challinor 

et al., 2014). Whether "process-based" or "statistical," these models provide a robust basis for evidence-driven agri-

cultural decision-making. Yield estimates can be used to evaluate and compare proposed management, policy, and 

investment alternatives, predict year-to-year risks to food security due to droughts and floods.
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4.1 Yield estimation:  
Review of different approaches
Remote sensing-based yield estimation methods use an empirical relationship between 

field-level crop growth and yield and the satellite-measured reflectance data. Existing 

literature can be roughly classified into two approaches that estimate yield from 1) a 

post-harvest empirical relationship between vegetation indices and yield, 2) a with-

in-season statistical modeling framework that assimilates remote sensing estimates 

with the model-estimated yields.

4.1.1 Empirical modeling approach (post-harvest)

An empirical modeling approach estimates crop yield based on the statistical relation-

ship between satellite remote sensing-derived vegetation indices with crop growth 

and yield. This approach is, by far, more common than within-season statistical mod-

els. The method has been tested in Canada, where Mkhabela et al. (2010) tested the 

performance of yield estimates from MODIS-derived 10-day composite of NDVI data 

throughout the growing season of four crops (barley, canola, field peas, and spring 

wheat) across 40 Census Agricultural Regions in the Canadian Prairies. Regression mod-

els using the running average of NDVI from one to two months before harvest estimated 

yields within ±10% of the actual reported data. In the U.S., Sakamoto et al. (2013) used 

MODIS-derived WDRVI (Wide Dynamic Range Vegetation Index) and crop phenology 

data to develop a statistical maize yield estimation model. The WDRVI data around the 

silking stage showed the best correlation with maize yields at multiple scales from field 

to county levels. Sakamoto et al. (2014) further developed the model to incorporate a 

bias correction algorithm to address region-dependent yield prediction errors. 

Similarly, in the U.S., Bolton & Friedl (2013) used MODIS-derived EVI2 (2-band Enhanced 

Vegetation Index) and crop phenology information to improve yield forecasting per-

formance for maize and soybean. Lobell et al. (2015) developed a more sophisticated 

approach incorporating a process-based crop model in the analytical framework. Using 

the APSIM model (Agricultural Production Systems Simulator; https://www.apsim.info), 

they first emulated reflectance values from the model-estimated crop growth and yield. 

The emulated pseudo-observation data was used to train empirical models to predict 

yields. Finally, they applied the empirical model to the Landsat-measured real-reflec-

tance values with gridded monthly weather data to estimate yields across the region. 

The approach is called SCYM (Scalable satellite-based Crop Yield Mapper), developed in 

Google Earth Engine and tested for maize and soybean in the Midwestern U.S.

https://www.apsim.info
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Figure 7:
Comparison of (a) full plot yields vs. predictions from a remote sensing model calibrated to full plot yields, (b) crop cut yields vs. predictions 

from a remote sensing model calibrated to crop cut yields, and (c) full plot yields vs. "uncalibrated" remote sensing yield estimates, which 

are based on calibration to crop model simulations. All panels show results for pure stand maize plots at least 0.1 ha in size, which is the 

subset of plots used to calibrate the models in (a) and (b) (Lobell et al. 2019).

While showing promising performances, the majority of analyses have been conducted 

in rather homogeneous fields in large-scale agriculture. For smallholders' agriculture, 

Burke and Lobell (2017) developed an empirical model using the GCVI (green chlorophyll 

vegetation index) derived from TerraBella imagery (1 meter). They compared it with 

field-measured maize yield survey data in western Kenya. The model showed a prom-

ising performance (R2 up to 0.4) when the field area is precise and larger. They demon-

strated the comparable accuracy and value of using high-resolution satellite imagery 

to estimate smallholder farms' crop yield, even with minimal or no field training data. 

For smallholders' maize farms in eastern Uganda, Lobell et al. (2019) applied the SCYM 

approach (Lobell et al., 2015) using five types of Sentinel-2-derived vegetation indices 

(i.e., NDVI, GCVI, MTCI, NDVI705, and NDVI740). They then compared the yield estimates 

with three types of ground-based yield measures (e.g., self-reported, sub-plot crop 

cutting, and full-plot crop cutting). They found that, compared to the full-plot crop cut-

ting, which was considered the gold standard, satellite-based yield estimates explain 

as much, or more, yield variations across fields (Figure 8). Further, crop-cut and satel-

lite-based yield estimates showed similar associations with field management factors, 

indicating the potential applicability of satellite-based yield estimates in smallholders' 

crop production systems. SCYM approaches use a synthetic yield estimate generated 

from a process-model as the target variable in developing the relationship with satellite 

variable. In that sense, the approach does not require observed yield data (except for 

validation) but requires a well-calibrated crop model.
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4.1.2 Data assimilation approach (within-season)

Crop growth and yield estimates from process-based crop models can be assimilated 

with satellite remote sensing-estimated leaf area index (LAI). This assimilation process 

effectively calibrates the crop model and, over time, reduces the uncertainty of mod-

el-estimated yields. For example, Huang et al. (2015) assimilated Landsat-derived LAI 

with the WOFOST crop model using the ensemble Kalman Filter approach to improving 

winter wheat yield estimations. NASA Harvest's GEOCIF (Global Earth Observation Crop 

Yield and Condition Forecasting) approach uses a machine learning-based yield predic-

tion approach. The GEOCIF approach uses an ensemble-based machine learning model 

to estimate in-season crop yield, based on multiple globally available earth observation 

datasets (e.g., crop-specific crop masks, NDVI, LAI, temperature, precipitation, soil mois-

ture, and evaporative stress index). GEOCIF reliably forecasted crop yields 2-3 months 

before harvest, with errors in the range of 1.5-5% in previous studies (Figure 8).

Figure 8:
Comparison of GEOCIF simulated and actual crop yields for five crops across multiple commodity 

crop-producing regions. Source: Sahajpal (2020).
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4.2 Summary and recommendations
Timely and reliable crop yield estimates are vital at multiple levels, from achieving 

smallholder farmers' resilient livelihood to making policies for ensuring food security 

and economic growth. Given the challenges of ground-level yield measurement at 

scale, the potential of using satellite remote sensing-derived information to estimate 

crop yields across large-area is highly appealing. Many examples of empirical modeling 

approaches exist, yet not all the approaches may apply to smallholders' farming systems 

in low and middle-income countries. Inherently smaller fields and uneven management 

practices have proven to pose significant challenges. To address the challenges, the res-

olution of imagery should be sufficiently high, both spatially and temporally. Regarding 

spatial resolution, Burket and Lobell (2017) reported that, compared to the very high 

1-meter resolution imagery from TerraBella, 3.7-meter (e.g., PlanetScope), 10-meter 

(e.g., Sentinel) and 30-meter (e.g., Landsat) data loses the explanatory power of maize 

yields in western Kenya by 25% and 50%, respectively. The temporal resolution, or the 

imagery acquisition frequency, is especially important in rainfed agriculture, where the 

rainy season (i.e., clouds) coincides with major crop seasons. Multiple images acquired 

throughout the season provide the possibility of cloud-masking.

In addition to the availability of (very-) high-resolution satellite remote sensing data, 

smallholder farmers' management practice data will be important to improve yield 

estimates' accuracy and applicability. These data, such as the adoption and application 

of fertilizer, high-yielding variety, supplementary irrigation, and soil fertility manage-

ment practices, are significant factors for determining yield levels yet are largely not 

observable from remote sensing. Soil properties (e.g., soil texture, acidity levels, rooting 

depth) and conditions (e.g., moisture contents, fertility levels) are also important factors 

often highly associated with yield levels, especially in smallholders' farming systems. 

Hyper-local weather data over the growing season will also increase the explanatory 

power of empirical models. Lastly, coordinated efforts to measure ground-based yield 

data should continue, ideally collected using a standardized protocol at strategically 

identified locations that improve the representativeness of data from smallholder 

farming systems. More research is also needed to expedite the field-level yield data col-

lection with an improved level of accuracy. Through these collective efforts, more yield 

estimating research pilots will continue, spur innovations, and achieve the impacts. 
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5
Path Forward

Thanks to the increasing availability of technologies that help 
collect critical information on field boundaries, crop types, 
and crop yield, significant advances have been made in crop 
analytics for smallholders. Still, challenges remain that inhibit the 
ability to increase smallholder yield and improve management 
strategies. There remain several questions and challenges that 
required further insight before they can be fully resolved. These 
largely depend on the emergence of new technologies and 
methods that can help improve the accuracy of crop analytics 
products. Below we identify five key knowledge gaps that should 
be addressed to advance the field of crop analytics. 
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1. What are the most promising technologies to enable crop  
analytics at scale with high accuracy? 

Today it is possible to collect ground truth data for crop analytics, including crop 

type, field boundaries, crop diseases, and deficiencies, using handheld devices with 

built-in GPS and camera. With the development of attachable sensors that enable 

measurements of temperature, humidity, pressure, illuminance and photosyn-

thetically active radiation in the field, the range of applications is likely to increase 

(Saiz-Rubio and Rovira-Más, 2020), as is the accuracy of measurements. Regarding 

remote sensing data, much of the data available for free today are too coarse for 

smallholder crop analytics while data of sufficient resolution are often prohibitively 

costly. But the cost, frequency, and resolutions of data collected by CubeSats are 

improving steadily; this development is likely to create data streams of high rele-

vance for smallholder agriculture.

2. What is the minimum amount of ground-truth data required to 
enable crop analytics at scale? 

Traditional analyses have relied on supervised and unsupervised classification 

techniques to train and test the model's accuracy. With such techniques, excess 

data can compromise the quality of models – so caution must be exercised when 

designing the model. In recent years, machine learning, deep learning, and transfer 

learning approaches have been promoted as methods to generate highly accurate 

crop analytics products with fewer data than (un)supervised classification models. 

The question of how much data is needed to train the algorithms is still unan-

swered. Initial work in this direction has already started (e.g., Azzari et al., 2021) 

but additional studies are needed. This question is not trivial as determining the 

minimum amount of ground-truth data required can help design an effective study 

while reducing operational costs.

3. What are the minimum required types and accuracy of datasets to 
improve crop analytics in smallholdings? 

Specifying a minimum required accuracy or precision of maps and estimates is com-

plicated. A precision requirement suggests that if a threshold needs to be reached 

for the data to be valid or used in subsequent analyses – this is rarely the case. 

Instead, users should try to estimate and correct for bias, and quantify and reduce 

uncertainty as far as practicable. The communication of such information is often 

invaluable for using datasets, measurement, and estimates in decision-making or 

subsequent analyses. Moving forward, the community should thus pay attention 

to approaches to achieve unbiasedness and uncertainty quantification and how to 

communicate and use such information in crop analytics. 
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4. What methods, other than field assessments, are available to  
obtain ground-truthed data? 

As the cost and resolution of remote sensing data improve, collecting imagery 

observations is becoming increasingly feasible. Observing reference conditions in 

imagery for training or sampling-based estimation is done routinely in studies of 

land cover change, deforestation, and other large-scale landscape processes. The 

resolution of imagery in such studies is too coarse for smallholder agriculture but 

as mentioned, the situation is changing. Also, the use of mobile applications for the 

collection of ground-truth observations is increasing. The data collected are stored 

in cloud computing platforms and can be made available to the public, and used for 

crop analytics. While it can be challenging to assess the quality of such data, the 

sheer quantity makes the data attractive for application using machine learning 

and artificial intelligence. For example, Wang et al. (2020) used 2 million crowd-

sourced ground-truth observations collected by farmers using the app Plantix to 

map crop types.  

5. What are the advantages and disadvantages of different machine 
learning/artificial intelligence algorithms used for crop analytics? 

Machine learning algorithms offer opportunities to process unprecedented 

quantities of data to obtain data on crop boundaries, types and yield. Similarly, 

ever-growing datasets of crowd-sourced observations are already available to the 

public. Such datasets are helpful when training a machine learning algorithm. The 

combination of cloud computing, machine learning, large ground truth datasets for 

training, and free satellite imagery at high resolution has made it easier than ever to 

generate valuable information for smallholder crop analytics over large areas. The 

drawback is the technical know-how required to perform such analyses. As crop 

analytics require more advanced technologies, a critical path forward will incorpo-

rate technology into devices that are readily available to smallholder farmers. 

Undoubtedly, the increasing availability of very high-resolution data from various 

sources (satellites, handheld devices, smartphones, and UAVs) and new analyti-

cal approaches based on machine learning algorithms will offer opportunities to 

answer these questions. The crop analytics community is in an unprecedented 

position to advance solutions to these five critical questions in the coming years, 

and enable crop analytics at scale to benefit smallholder farmers.



|   State of the Science of Ground truthinG in crop analyticS for Smallholder farmerS27

Acknowledgements
The authors would like to thank Drew Wheadon, Amanda Cole, Caroline Aubry, Richard Choularton, and Lyndon Estes 

who reviewed and contributed with insightful comments to earlier versions of this paper.

References
Aneece, I., & Thenkabail, P. (2018). Accuracies Achieved in 

Classifying Five Leading World Crop Types and their Growth 

Stages Using Optimal Earth Observing-1 Hyperion Hyperspec-

tral Narrowbands on Google Earth Engine. Remote Sensing, 10 

(12), 2027.

Azzari, G., Jain, S., Jeffries, G., Kilic, T. and Murray, S., 2021. 

Understanding the Requirements for Surveys to Support 

Satellite-Based Crop Type Mapping. 

Blaschke, T. (2010). Object-based image analysis for remote 

sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 

65(1), 2-16.

Brown M.E., & Funk C.C. (2009). Early Warning of Food Security 

Crises in Urban Areas: The Case of Harare, Zimbabwe, 2007. In: 

Showalter P., Lu Y. (eds) Geospatial Techniques in Urban Hazard 

and Disaster Analysis. Geotechnologies and the Environment, 

vol 2. Springer, Dordrecht. 

Burke, M., & Lobell, D. B. (2017). Satellite-based assessment 

of yield variation and its determinants in smallholder African 

systems. Proceedings of the National Academy of Sciences, 

114(9), 2189-2194.

Casady, W. W., & Palm, H. L. (2002). Precision Agriculture: Remote 

Sensing and Ground Truthing. Outreach & Extension, University 

of Missouri-Columbia.

Challinor, A., Watson, J., Lobell, D., Howden, S., Smith, D., & 

Chhetri, N. (2014). A Meta-Analysis of Crop Yield under Climate 

Change and Adaptation. Nature Climate Change, 4, 287-291.

Chew, R., Rineer, J., Beach, R., O'Neil, M., Ujeneza, N., Lapidus, D., 

... & Temple, D. S. (2020). Deep Neural Networks and Transfer 

Learning for Food Crop Identification in UAV Images. Drones, 

4(1), 7.

Cochran, W. G. (1977). Sampling techniques. John Wiley & Sons.

Dorward, A., & Chirwa, E. (2011). The Malawi agricultural input 

subsidy program: 2005/06 to 2008/09. International Journal of 

Agricultural Sustainability, 9(1), 232-247.

Du Z, Yang J, Ou C, Zhang T. (2019). Smallholder Crop Area 

Mapped with a Semantic Segmentation Deep Learning 

Method. Remote Sensing, 11(7),888.

Duro, D. C., Franklin, S. E., & Dubé, M. G. (2012). A comparison 

of pixel-based and object-based image analysis with selected 

machine learning algorithms for the classification of agricul-

tural landscapes using SPOT-5 HRG imagery. Remote Sensing of 

Environment, 118, 259-272.

Estes, L.D., McRitchie, D., Choi, J., Debats, S., Evans, T., Guthe, 

W., Luo, D., Ragazzo, G., Zempleni, R. and Caylor, K.K., 2016. A 

platform for crowdsourcing the creation of representative, 

accurate landcover maps. Environmental Modelling & Software, 

80, pp.41-53.

Estes, L.D., Ye, S., Song, L., Luo, B., Eastman, J.R., Meng, Z., Zhang, 

Q., McRitchie, D., Debats, S.R., Muhando, J. and Amukoa, A.H., 

2021. High resolution, annual maps of the characteristics of 

smallholder-dominated croplands at national scales.

FAO (2017). Methodology for estimation of crop area and crop 

yield under mixed and continuous cropping. Rome. 

FAO (2018). The State of Food Security and Nutrition in the World 

2018. Building climate resilience for food security and nutrition. 

Rome.

Fritz, S., See, L., Bayas, J.C.L., Waldner, F., Jacques, D., Beck-

er-Reshef, I., Whitcraft, A., Baruth, B., Bonifacio, R., Crutchfield, 

J., & Rembold, F., (2019). A comparison of global agricultural 

monitoring systems and current gaps. Agricultural systems, 168, 

258-272.



|   State of the Science of Ground truthinG in crop analyticS for Smallholder farmerS28

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., 

Lawrence, D., Muir, J. F., ... & Toulmin, C. (2010). Food security: 

the challenge of feeding 9 billion people. Science, 327(5967), 

812-818.

Google (2020). TensorFlow and Earth Engine. Google Developers. 

https://developers.google.com/earth-engine/guides/tensorflow

Hegarty-Craver, M., Polly, J., O'Neil, M., Ujeneza, N., Rineer, J., 

Beach, R. H., ... & Temple, D. S. (2020). Remote crop mapping at 

scale: Using satellite imagery and UAV-acquired data as ground 

truth. Remote Sensing, 12(12), 1984.

HLPE (2013). Investing in smallholder agriculture for food security. 

A report by the High Level Panel of Experts on Food Security and 

Nutrition of the Committee on World Food Security. Rome.

Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First experience 

with Sentinel-2 data for crop and tree species classifications in 

central Europe. Remote Sensing, 8(3), 166.

Krell, N. T., Giroux, S. A., Guido, Z., Hannah, C., Lopus, S. E., Caylor, 

K. K., & Evans, T. P. (2020). Smallholder farmers' use of mobile 

phone services in central Kenya. Climate and Development, 1-13,

Lobell, D. B. (2013). The use of satellite data for crop yield gap 

analysis. Field Crops Research, 143, 56-64.

Lowder, S. K., Skoet, J., & Raney, T. (2016). The number, size, 

and distribution of farms, smallholder farms, and family farms 

worldwide. World Development, 87, 16-29.

Li, X., & Shao, G. (2014). Object-based land-cover mapping 

with high resolution aerial photography at a county scale in 

midwestern USA. Remote Sensing, 6(11), 11372-11390.

Macdonald, R. B. (1984). A summary of the history of the 

development of automated remote sensing for agricultural 

applications. IEEE Transactions on Geoscience and Remote 

Sensing, 22(6), 473-482.

Minallah. N., Tariq, M., Aziz, N., Khan, W., Rehman. Au., & 

Belhaouari, S.B. (2020). On the performance of fusion based 

planet-scope and Sentinel-2 data for crop classification using 

inception inspired deep convolutional neural network. PLoS 

ONE 15(9), e0239746. 

Mendes, J., Pinho, T. M., Neves dos Santos, F., Sousa, J. J., Peres, 

E., Boaventura-Cunha, J., ... & Morais, R. (2020). Smartphone 

applications targeting precision agriculture practices—a 

systematic review. Agronomy, 10(6), 855.

North, H. C., Pairman, D., & Belliss, S. E. (2019). Boundary delin-

eation of agricultural fields in multitemporal satellite imagery. 

IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 12(1), 237-251.

Nowakowski, A., Mrziglod, J., Spiller, D., Bonifacio, R., Ferrari, I., 

Mathieu, P.P., Garcia-Herranz, M. and Kim, D.H., 2021. Crop type 

mapping by using transfer learning. International Journal of 

Applied Earth Observation and Geoinformation, 98, p.102313.

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, 

C. E., & Wulder, M. A. (2014). Good practices for estimating 

area and assessing accuracy of land change. Remote Sensing of 

Environment, 148, 42-57.

Pinter Jr, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, 

M. S., Daughtry, C. S., & Upchurch, D. R. (2003). Remote sensing 

for crop management. Photogrammetric Engineering & Remote 

Sensing, 69(6), 647-664.

Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; 

Justice, C.O. (2010). Estimating Global Cropland Extent with 

Multi-year MODIS Data. Remote Sensing 2, 1844-1863.

Pongnumkul, S., Chaovalit, P., & Surasvadi, N. (2015). Applica-

tions of smartphone-based sensors in agriculture: a systematic 

review of research. Journal of Sensors, 2015, 1-18.

Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., 

Iqbal, M. M., ... & Travasso, M. I. (2014). Food security and food 

production systems. In Climate Change 2014: Impacts, Adap-

tation, and Vulnerability (Chapter 7, pp. 485-533). Cambridge 

University Press.

Roy, D. P., & Yan, L. (2020). Robust Landsat-based crop time 

series modelling. Remote Sensing of Environment, 238, 110810.

Rydberg A. & Borgefors G. (2001). Integrated method for 

boundary delineation of agricultural fields in multispectral 

satellite images. IEEE Transactions on Geoscience and Remote 

Sensing 39(11), 2514–2520.

https://developers.google.com/earth-engine/guides/tensorflow


|   State of the Science of Ground truthinG in crop analyticS for Smallholder farmerS29

Saiz-Rubio, V., & Rovira-Más, F. (2020). From smart farming 

towards agriculture 5.0: A review on crop data management. 

Agronomy, 10(2), 207.

Saraiva, M., Protas, É., Salgado, M., & Souza Jr, C. (2020). Auto-

matic Mapping of Center Pivot Irrigation Systems from Satellite 

Images Using Deep Learning. Remote Sensing, 12(3), 558.

Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature 

effects indicate severe damages to US crop yields under climate 

change. Proceedings of the National Academy of Sciences, 

106(37), 15594-15598.

Skakun, S., Kussul, N., Shelestov, A., & Kussul, O. (2016). The use 

of satellite data for agriculture drought risk quantification in 

Ukraine. Geomatics, Natural Hazards and Risk, 7(3), 901-917.

Stehman, S. V., & Czaplewski, R. L. (1998). Design and analysis 

for thematic map accuracy assessment: fundamental princi-

ples. Remote Sensing of Environment, 64(3), 331-344.

Tang, Q., Peterson, S., Cuenca, R. H., Hagimoto, Y., & Lettenmaier, 

D. P. (2009). Satellite-based near-real-time estimation of irri-

gated crop water consumption. Journal of Geophysical Research: 

Atmospheres, 114(D5).

Thenkabail P. S., Knox J. W., Ozdogan, M., Gumma, M. K., Con-

galton, R. G., Wu, Z., Milesi, C., Finkral, A., Marshall, M., Mariotto, 

I., You, S. Giri, C. & Nagler, P. (2012). Assessing future risks to 

agricultural productivity, water resources and food security: 

how can remote sensing help? Photogrammetric Engineering 

and Remote Sensing, 78(8): 773-782.

Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M. K., Giri, C., 

Milesi, C., Ozdogan, M., Congalton, R., Tilton, J., Sankey, T. R., 

Massey, R., Phalke, A., and Yadav, K. (2014). Global Cropland 

Area Database (GCAD) derived from Remote Sensing in Support 

of Food Security in the Twenty-first Century: Current Achieve-

ments and Future Possibilities. In P. S. Thenkabail (Ed.) Remote 

Sensing Handbook. Land Resources: Monitoring, Modelling, and 

Mapping. CRC Press Inc.

Van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, 

P., & Hochman, Z. (2013). Yield gap analysis with local to global 

relevance—a review. Field Crops Research, 143, 4-17.

Wang, S., Di Tommaso, S., Faulkner, J., Friedel, T., Kennepohl, A., 

Strey, R., & Lobell, D. B. (2020). Mapping crop types in southeast 

india with smartphone crowd-sourcing and deep learning. 

Remote Sensing, 12(18), 2957.

Welton, G. (2011). The impact of Russia's 2010 grain export ban. 

Oxfam Policy and Practice: Agriculture, Food and Land, 11(5), 

76-107.

Weersink, A., Fraser, E., Pannell, D., Duncan, E., & Rotz, S. (2018). 

Opportunities and challenges for big data in agricultural and 

environmental analysis. Annual Review of Resource Economics, 

10, 19-37.

Woodcock, C. E., Loveland, T. R., Herold, M., & Bauer, M. E. (2020). 

Transitioning from change detection to monitoring with remote 

sensing: A paradigm shift. Remote Sensing of Environment, 238, 

111558.

Zalles, V., Hansen, M. C., Potapov, P. V., Stehman, S. V., Tyukavina, 

A., Pickens, A., ... & Chavez, S. (2019). Near doubling of Brazil's 

intensive row crop area since 2000. Proceedings of the National 

Academy of Sciences, 116(2), 428-435.



State of the Science  
Ground Truthing in  
Crop Analytics for  
Smallholder Farmers
The Enabling Satellite-based Crop Analytics at Scale (ECAAS) Initiative is a multi-phase 

project that aims to catalyze the development, availability, and uptake of agricultural 

remote-sensing data and subsequent applications in smallholder farming systems. 

The initiative is funded by The Bill & Melinda Gates Foundation and implemented  

by Tetra Tech.

info.ecaas@tetratech.com 
cropanalytics.net

Final report
August 2021

Authors

P. Olofsson: ORCID iD (0000-0002-8406-4719). 
J. Koo: ORCID iD (0000-0003-3424-9229).
A. Ghosh: ORCID iD (0000-0003-3667-8019).
P. K. Krishnamurthy: ORCID iD (0000-0002-0320-8523).

We have no conflict of interest to disclose.

mailto:info.ecaas%40tetratech.com?subject=
http://cropanalytics.net

