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1 
Overview



|   Creating Open agriCultural Maps and grOund truth data2

Expanding and improving the quality of agricultural 

extension services available to smallholder farmers is an 

important part of the effort to improve their productivity 

and resilience to weather extremes and other shocks. 

Delivering such services effectively requires accurate 

data on where farmers' fields are located, what crops 

they are growing, and what their yields are. These data 

are generally lacking in many smallholder-dominated 

agricultural systems and therefore depend on satellite 

remote sensing to generate. However, remote sensing of 

smallholders' fields is a major challenge, particularly with 

respect to mapping crop types. Without accurate crop 

type maps, it is hard to map yields-which requires linking 

crop-specific models to fields-and thus to see how they 

vary between fields and in response to different manage-

ment practices (e.g. Jain et al, 2019; Jin et al, 2019). Crop 

type maps are also important for other applications, such 

as for improving national planted area estimates. 

There have been several recent advances in the ability 

to map crop types. One important development is the 

increasing number of satellites that can capture imag-

ery that is both frequent and detailed enough to track 

seasonal changes in crop growth within the boundaries 

of small crop fields (<1 ha). Chief among these are the 

two Sentinel missions (European Space Agency), which 

provide free weekly to bi-weekly optical and radar imag-

ery at <20 m resolution. Planet, a commercial satellite 

company, offers daily 3.7 m resolution imagery and is 

implementing a fusion product (Houborg and McCabe, 

2018) that produces daily, Landsat-quality reflectance 

data at <5 m resolution. At the same time, new machine 

learning approaches are rapidly improving the ability to 

accurately distinguish between different crop types in 

these different types of imagery. Models such as Random 

Forests, which remains a go-to model for classifying crop 

types (e.g. Azzari et al, 2021), are being out-performed by 

deep learning models (e.g. Rustowicz et al, 2020). There 

are a variety of architectures being used, which vary in 

their ability to learn from both the temporal and spatial 

information provided by satellite image time series (e.g. 

Rustowicz et al, 2020; Rußüwurm and Kß∂rner; 2017, 

2018), and in how they are transferred between mapping 

tasks and domains (e.g. Tseng et al, 2021).
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Despite these advances, the major bottleneck to their implementation is the inescap-

able need for georeferenced observations of crop types. Unlike field boundaries (e.g. 

Lesiv et al, 2019; Estes et al, 2021), most crop types cannot be recognized visually in 

high resolution satellite data, and thus must be collected on the ground. Collecting crop 

types on the ground is expensive and hard to sustain, particularly across large areas and 

over recurring seasons, which is the scale of coverage needed to develop reliable and 

repeatable crop type maps.

For this project, we developed an approach designed to address the challenge of sus-

tainably collecting crop-type data over large areas. This approach embeds crop type 

collection within an existing farm extension service that is connected to a large number 

of smallholder farmers. The observations, collected in accordance with recommended 

best practices, are used to create crop type maps using machine learning model applied 

to Sentinel and PlanetScope imagery, with predictions filtered a high-resolution crop-

land map. The aim is to use the resulting maps to develop additional extension services, 

thereby boosting revenues and providing a means for expanding and sustaining the 

collection groundtruth data.

This report provides an overview of the methods and results from the initial crop 

type maps for maize and rice developed from groundtruth data collected during the 

first season of this project in the Sekyere West and Ejura Sekyedumase districts (red in  

Figure 1.1A).

https://github.com/radiantearth/ground-referencing-guide
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2 
Mapping Approach

The mapping process had four key components (Figure 2.1), 
which included the processing of the sample data used to define 
the location and type of crop types, the pre-processing of the 
satellite imagery needed to predict those crop types, the training 
and validation of the model developed to map crop types, and 
the application of the trained model to map crop types onto the 
processed satellite imagery.
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Figure 1.1:
Location of the four study districts (red = districts collected in year 1; blue = districted to be collected in year 2) in relation to the rest of Ghana 

(A), and an overlay of the image tiling grid used to process Sentinel-1 and 2 imagery (B).

Figure 2.1:
The key components of the mapping approach.

A B
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Figure 2.2: 
An overview of the steps taken to prepare the crop-type sample.

2.1 Preparing the crop type labels
To prepare a set of data for training and validating a crop type model (labels), we fol-

lowed three steps (Figure 2.2). We first cleaned and verified the crop-type polygons 

collected in the field (the groundtruth), which included maize, rice, and a variety of other 

crops grouped into a broad "other crops" class. We then created a set of sample points 

that indicated areas that are not cropland (non-cropland), and finally evaluated the 

characteristics of the sample, in terms of its spatial and temporal distribution, and the 

relative frequency and abundance of each class. These characteristics determine how 

representative the sample is of the broader region, and how effectively it can be used to 

train and validate mapping models.
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Table 2.1: 
A list of commonly occurring errors in the groundtruth polygons and their likely causes. 

Category Error Cause

Geometric  ΰ Spikes and indents 

 ΰ Partial polygons

 ΰ Overlapping polygons

 ΰ Polygon contains non-crop

 ΰ cover (e.g. road)

 ΰ Field photos pointed at ground 

or not at crop

 ΰ GPS mis-calibration, Partial polygons weak signal

 ΰ GPS positional error; agent didn’t follow the field edge

 ΰ Photo capture didn’t follow protocol

Data Entries  ΰ Crop in photos doesn’t match 

recorded type

 ΰ Same photos for multiple fields

 ΰ Mis-coded entry; record capture or merge error

 ΰ Data entry error; merge error

In the second step, we created a set of non-crop samples to help distinguish cropped 

from non-cropped areas. We used field boundary maps, developed for the year 2018 

using our high-resolution mapping platform, to identify non-cropped areas, and placed 

a random sample of points within these areas. Two observers then examined each of 

these points (converted to ~0.1 ha polygons) within the current season's PlanetScope 

imagery to verify that they did not fall in cropland. The verified points were combined 

with the cleaned groundtruth polygons to create a full sample, which included 589 

maize fields, 58 rice fields, 18 fields containing other crops (e.g carrots or cabbage), 

and 543 non-cropland samples located within ~15 km of the groundtruth data. The 

groundtruth polygons were grouped in three primary concentrations in the two districts 

(Figure 1.1). The reported planting dates for most fields were August-September, 2020. 

The appendix contains further details on the crop-type samples and their processing.

The first step was performed to ensure that the field-collected boundaries did not have any invalid geometries (stray 

points, self-intersections, and overlaps) or misclassifications that would introduce errors into the machine learning 

process, or confound the ability to assess map accuracy. We repaired obviously damaged polygons where possible, or 

else removed them, and compared the boundaries of the polygons to field boundaries visible in PlanetScope base map 

imagery collected during the same season (see section 2.2). Misaligned boundaries were adjusted to avoid overlaps with 

adjacent field polygons, and to avoid adjacent stands of trees, roads, and other non-crop features, in order to minimize 

the contamination of the signal related to that crop type within the imagery. We also checked the ground-collected 

photos captured for each field, to ensure that the crop recorded for each polygon was correct. Table 2.1 describes 

several common issues encountered during this process.
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2.2 Pre-processing of satellite imagery
We used three different sources of satellite imagery known to be effective for agricultural mapping: PlanetScope,  

Sentinel-1, and Sentinel-2. The key characteristics and advantages and limitations of each kind of imagery are listed 

in Table 2.2 on the below.

Satellite Sensor 
Type

Characteristics Advantages Limitations

PlanetScope Optical <4 m resolution; Daily-

coverage; 4 bands (visual 

and near-infrared)

Can distinguish 

boundaries of most 

small fields; High 

frequency good for 

tracking crop growth; 

Can develop compos-

ites even in cloudy 

regions; Free use for 

non-commercial, 

sustainability-oriented 

purposes

Spectral precision is 

variable; Daily imagery  

requires purchase;  

Free use limited to  

monthly/6-monthly 

coverage over tropics.

Sentinel 1 Radar 5-20 m resolution; 

12-daily coverage; 

Dual-polarity in C-Band

Unaffected by cloud; 

provides uninter-

rupted time series of 

information related 

to vegetation physical 

structure

Back-scatter speckle 

requires filtering, limits 

effective resolution, and 

introduces error in models

Sentinel 2 Optical 10-20 m resolution; 

5-daily coverage; 10 

bands (visual, near and 

shortwave-infrared)

Can distinguish 

boundaries of many 

fields; High frequency 

captures vegetation 

phenology; High 

spectral depth and 

precision provides 

important information 

on crop type and 

health

Can miss smallest fields; 

hard to delineate field 

boundaries for training; 

5-day coverage may be 

too limited for cloudiest 

regions

Table 2.2: 
The characteristics and advantages and limitations of the different satellite image sources used.
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For this study, we used PlanetScope monthly to six-monthly basemaps (available 

through Norway's International Climate and Forests Initiative [NICFI]) covering the 

period June, 2020 through January, 2021. We collected Sentinel-1 and Sentinel-2 radar 

images for all available time periods between January, 2020 and February, 2021. For 

Sentinel-1, we used the ESA's algorithms for reducing noise and removing terrain effects. 

For Sentinel-2, we applied algorithms to atmospherically correct and detect clouds in 

the image time series, and then combined images into two separate temporal compos-

ites (February-October, 2020 and November, 2020 through January, 2020) to reduce 

contamination due to heavy cloud cover.

After pre-processing, we fit a harmonic regression to the Sentinel-1 time series, reducing 

the time series to 6 coefficients that provide information on seasonality, and calculated 

10 vegetation indices from the Sentinel-2 seasonal composites. The Appendix contains 

further details on image processing.

Figure 2.3: 
The processing for developing and assessing the accuracy of the crop type maps.

2.3 Creating and assessing  
the crop type maps
The process for creating the crop type model and the resulting maps are shown in Figure 2.3 (which combines  

components 3 and 4 in Figure 2.1).
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In the first step, the crop-type samples were intersected 

with the processed satellite image features (80 in total), 

and the pixels (10 m) intersecting each polygon were 

extracted. We averaged the pixel values for each image 

feature intersecting each maize field and non-crop point 

but kept pixel values separate for rice and other crops 

because of their low numbers. We then boosted the 

sizes of rice and other crops by resampling and aver-

aging subsets of their pixels within each field until their 

sizes matched those of the maize and non-crop sam-

ples (~550 each). We then randomly split the resulting 

data table, setting aside 20% of the records as a map  

reference data set. We used the other 80% to train a 

multi-class Random Forests model. We used this initial 

model to select the most influential image predictors 

of crop type and retrained the model with 53 selected 

features. We then applied the trained model to the full 

stack of selected image features to generate probability 

maps for each class over the study area, and filtered the  

probability maps through an improved, deep learning 

generated version of the cropland layer, to confine pre-

dictions to areas more likely to be croplands. We created 

two versions of the crop-type maps (Figure 2.4). The first 

used a thresholding approach to classify pixels as maize 

or rice where their respective probability maps were 

higher than 0.6, with all other cropland pixels defaulting 

to the other crops class. The second version was based on 

maximum probability, in which each pixel was classified 

to the type that had the highest predicted probability 

for that pixel. The first map is more conservative, as it 

requires higher confidence to classify pixels as maize 

or rice. The second map is more inclusive but its classi-

fications have lower confidence because the maximum 

probability for a given pixel can be less than 0.5.
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Figure 2.4:
Predicted crop type distributions based on the two mapping approaches: 1) thresholding the Random Forests predicted probabilities (left); 2) 

assigning the type having the maximum predicted probability per pixel (right). The predicted probabilities for both maps were first filtered using 

a high-resolution cropland mask. The boundaries for Ejura Sekyedumase and Sekyere West districts are shown in black.

The two maps show substantially different distributions for maize, rice, and other crops. Maize and rice distributions 

are much sparser in the threshold map, and the other crop class is much more abundant. In comparison, the maximum 

probability (max-class) approach resulted in most cropland pixels being classified as maize, a larger area of rice, but 

relatively few cropland pixels classified as other crops.

Thresholded map Max-class

2.3.1 Map accuracy

We calculated three estimates of model/map accuracy. First, we used the trained  

Random Forests model to predict crop types on the extracted and per-field averages 

of the image features within the map reference sample, and then cross-tabulated the 

predicted and observed classes. The accuracy calculated from the resulting error matrix 

was 96.7%, which is overly optimistic. We also calculated the accuracy of each map in 

distinguishing maize from non-maize areas.

To do that, we re-classed the maps to maize or non-maize, used the reference polygons 

for maize and noncropland (excluding rice and other crop types because resampling 

meant they not independent from the training sample) to extract the classified pixels 

from each map, and selected the dominant class in each polygon as the map class. We 

followed Olofsson et al., (2014), to calculate area-adjusted error matrices and accuracies 

(Table 2.3).
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Non-Maize Maize n U

Threshholded 
Map

 ΰ Non-maize

 ΰ Maize

 ΰ n

 ΰ P

 ΰ 55.17

 ΰ 0

 ΰ 109

 ΰ 100.00

 ΰ 40.49

 ΰ 4.34

 ΰ 118

 ΰ 9.68

 ΰ 189

 ΰ 38

 ΰ 57.67

 ΰ 100.00

Max-class map  ΰ Non-maize

 ΰ Maize

 ΰ n

 ΰ P

 ΰ 80.57

 ΰ 0.24

 ΰ 109

 ΰ 99.70

 ΰ 6.02

 ΰ 13.17

 ΰ 118

 ΰ 68.61

 ΰ 115

 ΰ 112

 ΰ 93.04

 ΰ 98.21

The overall (0), User's (U), and Producer's accuracies are provided, as are the sample size 

(n). The error matrix lists reference values in columns, map values in rows, and the matrix 

cells represent the percent of areas.

As expected, the thresholded map had the lowest overall accuracy (60%), because the 

high threshold resulted in most maize reference fields being missed. These omissions 

are reflected in the low Producer's accuracy (the complement of omission error) of 10%. 

Conversely, the User's accuracy for maize was 100%, meaning that no non-maize areas 

were misclassified as maize. We thus have higher confidence that those fields classi-

fied as maize did in fact have maize growing in it during that season. The maximum 

probability map's accuracy was much higher at 94%, as fewer maize fields were omitted 

(maize Producer's accuracy = 69%). As with the first accuracy assessment, the second 

map's accuracy measures almost certainly over-state its map-wide accuracy, since the 

groundtruth data did not conform to the design requirements for a probability sample 

(Stehman and Foody, 2019). The crop type polygons were geographically clustered, and 

are therefore unlikely to be representative of the entire mapped region. In other words, 

we should be less confident in a maize classification that is far away from a cluster of 

ground truth polygons than one that is closer to it. The most likely accuracy values for a 

maize/non-maize map is therefore likely to fall between the two estimates.

Both maps may be useful for different purposes. The thresholded map can be used for 

targeting future groundtruth collection, as it may increase the chances that sampled 

areas contain the crop type of interest. The maximum probability map may better 

represent the relative abundance of maize and rice in the mapped regions. Both maps 

should be considered version 1 maps, which can be greatly improved as the size and 

representativeness of the sample is increased (see next section for recommendations).

Table 2.3: 
The Error matrix and accuracy measures for the maize and non-maize classes of the thresholded and 

maximum probability (max-class) crop type maps. 
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3 
Key Findings and  
Recommendations

The results from this first crop type mapping exercise have 
highlighted several key lessons related to each component of the 
work, with corresponding recommendations for improvements.
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3.1 Field collection  
of crop type data
 
3.1.1 The sample was unbalanced and unrepresentative

The main finding was that the small number of samples for rice and other crops relative to maize, and the clumpy 

geographic distribution of the sample, made it hard to develop a robust mapping model, and complicated the ability to 

objectively assess map accuracy. The class imbalance and lack of geographic representativeness were due in large part 

to logistical reasons described in the two subsequent findings.

Recommendation: Recent country-scale work found that 2,000-3,000 samples per crop class are sufficient for 

achieving close to the maximum possible model performance (Azzari et al, 2021). Our mapped region was <10% of the 

area in that study, thus the size of the maize sample in our analysis may be sufficient, but future efforts should focus 

on increasing samples from the other crops so that they are closer in size to that of maize. Increasing the spread of 

the sample across the entire mapping region is also critical. We, therefore, propose an updated sampling design that 

combines drone-based sampling with ongoing field efforts (see scaling-up plan in D2.5), which can increase both class 

balance and geographic coverage.

3.1.2 Farmer sensitization may undermine sample balance and representativeness

One of the factors contributing to the class imbalance and geographic clustering was the need to sensitize and iden-

tify farmers whose fields could be included in the sample. This preparatory work is vital and necessary for obtaining 

farmers' consent, but it can constrain the geographic scope of sampling and cause particular crops (maize) to be over- 

represented (e.g. when sensitization is done through a grower's coop).

Recommendation: This problem can be minimized by devoting more time to sensitization efforts, which can allow 

more farmer groups to be contacted before field efforts commence. The time required for such efforts should decline 

during subsequent field campaigns when previously sampled groups are revisited.

3.1.3 Transportation limited the geographic reach of sampling

Transportation hurdles, including poor roads and flooded river crossings, posed a significant impediment for field 

teams and limited the range of sampling efforts beyond the towns in which those teams were based. Field agents 

primarily use motorcycles for transport, thus traveling more than one hour away from town is impractical, or requires 

arranging overnight accommodation, which adds to costs and introduces other constraints (see next point).

Recommendation: Increasing the number of active field teams, selected from towns spread across the mapping region, 

may address this challenge (and has already been implemented for the Nkoranza and Tain districts).
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3.1.4 Cell and electricity networks delay  
data collection and delivery

Poor cellphone coverage in certain areas (e.g. around Berem, in Sekyere West) prevented field teams from uploading 

their data in a timely fashion. Lack of electricity in areas where teams were sampling limited the number of fields they 

could collect to the length of time their batteries could last on a single charge. This was a particular problem for teams 

that had to stay overnight in remote areas away from their home bases.

Recommendation: The first problem cannot be readily addressed, but the latter constraint can be (and was) partially 

addressed by providing additional battery packs to field teams.

 
3.1.5 GPS devices were often miscalibrated

Geometric errors in the field polygons (Table 2.1) indicated that the GPS devices used with the Mergdata platform were 

prone to calibration errors, resulting in data loss and the need for substantial post-collection cleaning, which prevents 

the automation of mapping pipelines.

Recommendation: Calibration errors may be improved by adopting GPS software that prevents track points from 

self-intersecting or overlapping, or by processing geometries stored in the database with cleaning algorithms (an 

example is ST_MakeValid in PostGIS). Field collection protocols should also ensure that each agent verifies that col-

lected polygons are closed and saved as soon as a field perimeter has been walked. An additional protocol suggested 

by NASA HARVEST (Kerner, pers. comm.) is to ensure that collection occurs only when GPS error is below 3-5 m.

 
3.1.6 Reference photos were often improperly  
registered or collected

A number of collected fields had one or more shared photos, making it impossible to verify which field they belonged 

to, and thereby undermining confidence in the identity of their recorded crop types. A number of photos were cap-

tured at inconsistent angles or pointed towards the ground, which limited understanding of the field context.

Recommendation: Photo capture should be more tightly integrated with the Mergdata platform. Field-collected 

images should retain the ExIf data containing GPS coordinates, which can help in verifying that images are correctly 

assigned to their recorded field polygons. Field protocols should ensure that reference images are captured consis-

tently in a landscape mode and with a view that contains both the crop and the opposite field boundary, from each of 

the four major sides of the field.
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3.2 Satellite image  
processing
 
3.2.1 Cloud cover is an importantlimit  
on the number of predictors

The high cloud cover over this area of Ghana, particularly during the May-October 

period, makes crop type mapping more dependent on radar-derived (Sentinel-1) pre-

dictors than in less cloudy regions. Since time series of optical imagery (particularly Sen-

tinel-2) provide the most effective predictors (Azzari et al, 2021), the reliance on radar 

data will reduce the skill of mapping models.

Recommendation: Evaluate the ability of radar-optical fusion approaches to mitigate 

this limitation. Another approach is the CESTEM algorithm (Houborg et al., 2018) that 

is being operationalized by Planet, which fuses PlanetScope with other optical sensors 

(e.g. Landsat and MODIS) to create daily time series that may increase the frequency of 

cloud-free optical observations during the growing season.

 
3.3 Model development
 
3.3.1 Random Forests are less transferable

The Random Forests model we used here is less transferable than newer deep learning 

approaches, and may therefore require larger and more frequently updated groundtruth 

data to reliably map crop types.

Recommendation: Examine whether deep learning models trained with this sample 

and open datasets from other regions (available of Radiant MLHub), and combined with 

transfer or meta-learning techniques (e.g. Tseng et al, 2021), improve performance and 

map reliability.
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4 
Appendix

This appendix contains further details  
on methods and results.
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4.1 Groundtruth data
The data processed for this study were confined to the samples of fields collected in the Ejura Sekyedumase and 

Sekyere West districts, representing crops planted mostly in the second half of 2020. Collections planned to capture 

the tail-end of the same season in the Nkoranza and Tain districts began too late, and thus coincided with the start of 

the subsequent growing season.

4.1.1 Field boundary validation

To evaluate field boundaries, we compared their shapes against PlanetScope analytic basemaps (4.8 m resolution) for 

the months of November, 2020, and January, 2021 (see Section 2.2.1), to detect misalignments between boundaries 

visible in the satellite imagery and GPS-collected boundaries. We removed overlapping fields, deleted "spike" verti-

ces, and repaired self-intersections. Partial polygons caused by GPS miscalibration were edited where possible, by 

adjusting geometries to align with boundaries visible within the PlanetScope imagery, but we removed records where 

the correct location of the field could not be ascertained. In some cases, we shrank boundaries to avoid portions of 

fields that substantially overlapped with trees or bushed areas, to minimize contamination of the cropland signal by 

reflectance from non-crop vegetation. We also examined the ground-collected reference images for duplicates, and 

for concordance with landscape conditions visible in the satellite imagery.

4.1.2 Sample characteristics

The crop type data were collected in three primary concentrations. The largest concentration was located in the south-

ernmost portion of Sekyere West district (near the town of Mampong), a smaller cluster in the east of this district near 

the town of Berem, and a more diffuse area in Ejura Sekyedumase district (Figure 4.1). We selected the portion of the 

non-cropland that fell within a ~15 km distance from the nearest field boundary for inclusion in the training dataset. 

The outermost null samples define the modeling domain used for this deliverable (Figure 4.1B).

A B

Figure 4.1: 
Distribution of collected samples (Farmerline-collected field samples and image-interpreted non-cropland samples) in relation to the four 

districts (A), and zoomed in to the area defining the mapping bounds (B). The yellow box in (B) indicates the area mapped in Figure 2.2A.
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Figure 4.2: 
Close-up of Farmerline-collected field samples and image-interpreted non-cropland samples (A; see yellow box in Figure 2B for location), and 

B) one of four collected reference images for a maize field indicated with the yellow outline in (A).

A B

Table 4.1 shows the frequency and average field size of the cleaned field sample. The 

mean-field sizes for the polygons in each class showed that maize fields were the 

largest on average, although it should be noted that this is an underestimate given the 

boundary reductions that occurred during the cleaning process.

Table 4.1: 
The count of the four available classes in the sample. The mean (in ha) and standard deviation (in paren-

theses) for the areas of polygons in each class are also provided. Class N Area Maize 589 1.84 (1.95) Rice 58 

1.42 (1.49) Other 18 0.37 (0.26) Non-crop 5430.01 (0)

Class N Area

Maize 589 1.84 (1.95)

Rice 58 1.42 (1.49)

Other 18 0.37 (0.26)

Non-crop 543 0.01 (0)

The majority of collected fields were reported to have been planted in August-Septem-

ber, 2020, with a smaller number planted in June/July 4.3). A handful of records sug-

gested planting between December 2019 and February/March, 2020, but these dates 

possibly reflect misreports or transcription errors.
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Figure 4.3: 
The distribution of reported 

planting dates by crop type.

During the cleaning process, we also noted several commonly occurring issues within the data. The first was a relatively 

high frequency of topological errors, manifesting as self-intersected, overlapping, and incomplete polygons, in addi-

tion to lines connecting polygons over large distances (reported in the previous deliverable) or "spikes" protruding away 

from or into field boundaries. Such errors resulted from GPS miscalibration. We were able to repair a number of these 

errors through manual digitization or GIS post-processing, but many errors could not be fixed and the corresponding 

records were thus removed.

The most difficult cases were locations that had partial overlapping polygons that appeared (within satellite imagery) 

to fall within a single field, yet contained different data. In these cases, we used our best judgment to assign the closest 

matching polygons to the field in question, and removed the other records. Another issue affecting many records 

were cases where the same images appear in the records for two or more different fields. As the field images lack ExIf 

data containing GPS coordinates, the fields to which such duplicated images belonged could not be identified. This 

resulted in the removal of some records where it was not possible to distinguish the originating field. In other cases, 

images appeared to show a different landscape than what was clearly visible in the satellite imagery over the field. For 

example, the field images might show an open field, whereas the polygon was situated in a clearly wooded landscape. 

In such cases, the record was removed from the database. A number of images were also taken pointed towards the 

ground, which made them less useful for understanding the field’s context, although they were helpful for identifying 

crop types.
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A number of polygons did not have data entries associated with them, beyond the 

crop type contained in the field. We retained some of these after inspection, in order to 

maintain as many records of rice and other crops as possible. These records are of lower 

confidence, given the lack of corroborating data.

Further reconciliation for a number of records will still be required.

4.2 Imagery
 
4.2.1 PlanetScope

We collected PlanetScope basemaps available through Norway's International Climate 

and Forests Initiative (NICFI). The basemaps represented the period June-August, 2020 

(with the longer period necessary for cloud cover), and monthly basemaps for October, 

November, and December, 2020, and January, 2021. We did not derived any indices from 

these images, but used their boundaries to define the tiling unit for pre-processing Sen-

tinel-1 and 2 imagery.

4.2.2 Sentinel-1

We collected level 1 granules in dual-polarization (VV+VH) over the mapping region for 

the time period January, 2020-February, 2021, and undertook several pre-processing 

steps. We first applied the orbit file to update the satellite orbit information, then nor-

malized the backscatter signals within the entire Sentinel-1 scene to reduce the thermal 

noise effects. We removed noisy and invalid data near scene edges, and converted DN 

values to SAR backscatter values, applying a modified Lee filter to reduce speckling, 

and a terrain correction algorithm to reduce topographic distortions in the images. We 

converted the unitless backscatter coefficient back to dB, and applied a Guided filter to 

further reduce speckling.

4.2.3 Sentinel-2

We collected and processed Level-1C Ttop-of-atmosphere Sentinel-2 imagery for the 

same time period. We applied atmospheric correction and cloud detection using the 

MAJA software (MACCS-ATCOR Joint Algorithm), producing a Level-2A product for each 

available image in the time series. We created cloud-free temporal composites using the 

WASP (Weighted Average Synthesis Processor), which calculates the average pixel value 

from an image times series using weights that include distance to clouds/shadows, 

aerosol optical thickness, and distance to synthesis date. The time interval used in ESA's 

Sen2agri platform is 45 days, but the study region in Ghana is very cloudy, therefore we 

used a longer multi-month interval to create the composites. The first composite period 

was 21 February, 2020 to October 28, 2020, and the second was 31 October, 2020 to 29 

January, 2021.

https://www.planet.com/nicfi/#support-resources
https://labo.obs-mip.fr/multitemp/maccs-how-it-works/
https://cropanalytics.net
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4.2.4 Derived features

From the processed imagery, we derived a number of additional features to be used as 

predictors. We fit a "Least Absolute Shrinkage and Selection Operator" (LASSO) regres-

sion to the Sentinel-1 time series, resulting in 6 coefficients extracted from the full 

annual time series, which are informative about vegetation phenology. We also derived 

the following vegetation indices from Sentinel-2 data (following Jin et al; 2019): indices 

from Sentinel-2 data (following Jin et al., 2019):

Table 4.2: 
Vegetation indices derived from the bands of Sentinel-2. All indices were derived for each seasonal  

composite.

Index Formula

 ΰ NDVI 

 ΰ GCVI

 ΰ RG1_GCVI

 ΰ RG2_GCVI

 ΰ MTCI

 ΰ MTCI2

 ΰ REIP

 ΰ NBR1

 ΰ NBR2

 ΰ NDTI

 ΰ CRC

 ΰ STI

 ΰ (NIR - Red) / NIR + Red)

 ΰ (NIR/Green) - 1

 ΰ (NIR/RedEdge1) - 1

 ΰ (NIR/RedEdge2) - 1

 ΰ (NIR - RedEdge1) / (RedEdge1 - Red)

 ΰ (RedEdge2 - RedEdge1) / (RedEdge1 - Red)

 ΰ 700 + 40 * ((Red + RedEdge3) / 2 - RedEdge1)  

/ (RedEdge3 - RedEdge1)

 ΰ (NIR - SWIR1) / (NIR + SWIR1)

 ΰ (NIR - SWIR2) / (NIR + SWIR2)

 ΰ (SWIR1 - SWIR2) / (SWIR1 + SWIR2)

 ΰ (SWIR1 - Green) / (SWIR1 + Green)

 ΰ SWIR1 / SWIR2

4.3 Development of the  
Random Forests model
To prepare the sample for training and testing the model, and to make up for the sub-

stantial class imbalance between the crop types, we extracted the features for each 

10 m image pixel falling primarily within a given field boundary, and then averaged 

the feature values within each field for maize pixels, but maintained as separate the 

extracted feature sets underlying each pixel falling within rice or other crop types. We 

then increased the number of samples for these two crop types by randomly selecting 

pixels from each field for each type, randomly sampling (with replacement) subsets of 

pixels within each field and averaging them, and repeating this until the total number of 

samples for each crop was ~550 (close to the size of maize sample). We then randomly 

selected 80% of samples from each class, including the non-crop sample, and reserved 

the remaining 20% for testing. The resampling effort for rice and other crops meant that 

the 20% of these assigned to the reference sample were not independent.
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The final Random Forests model had 100 trees and a tree depth of 1000. Of the 80 

predictor variables, 53 were retained based on causing a mean decrease in accuracy 

>0.01 when removed from the model. These variables and their relative importance are 

shown in Figure 4.4.

Figure 4.4: 
The relative importance of predictor variables retained in the Random Forests model. Variable importance 

is assessed in terms of the mean decrease in model accuracy when the variable is removed. Variables 

containing ‚ÄòPLA' refer to PlanetScope basemaps, followed by image time period, and the band number 

(indicated after the underscore). Sentinel-2 bands are those beginning with ‚ÄòB', followed by a channel 

number and interval number (1 = February - October, 2020; 2: October, 2020 - January, 2021). Vegetation 

indices are described in Table 2.2. Sentinel-1 harmonic coefficients for the VV or VH polarizations are 

indicated by their coefficient number.
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We used the trained model to generate probability maps 

for each crop class over the study area. We then filtered 

these probabilities using a second-generation cropland 

layer that was generated using deep-learning (U-Net) 

to classify cropland at 3.7 m resolution. This newer map 

replaces the initial version created using the original 

active learning approach (Estes et al, 2021). The predicted 

crop type probabilities were masked using this crop-

land layer, in order to confine predictions to more likely 

field boundaries. Because the map was generated from 

2018 and has more omission than commission error, 

and because field boundaries may shift substantially 

between years, we merged the crop-type polygons with 

the cropland mask so that groundtruth samples wouldn't 

be masked out.
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